Apoptotic cell death has recently been suggested to be the underlying mechanism of ovarian follicle atresia. To study the regulation of follicle cell apoptosis by sex steroids, we have analyzed ovarian DNA fragmentation, the hallmark of apoptosis, in rats treated with estrogens and androgens. Immature rats were hypophysectomized and implanted with diethylstilbestrol (DES) capsules. Two days later, DES implants were removed in some animals, followed by treatment with estrogens with or without androgens. The extent of ovarian apoptotic DNA fragmentation was analyzed by autoradiography of size-fractionated DNA labeled at 3'-ends by [32P]dideoxy-ATP. After DES withdrawal, ovarian weight decreased and DNA fragmentation increased in a time-dependent manner. In granulosa cells, an increase in apoptotic DNA fragmentation was seen 12 h after withdrawal of DES implants, followed by a 25-fold increase at 48 h. In situ analysis of DNA fragmentation on histological sections of ovaries, using a nonisotopic labeling of DNA by digoxigenin-dideoxy-UTP, also demonstrated that apoptosis induced by DES withdrawal is confined to the granulosa cells in early antral and preantral follicles. No increase in DNA breakdown was detected in thecal cells and interstitial tissues or granulosa cells of primordial and primary follicles. In contrast, replacement with DES (0.5 mg twice daily) or estradiol benzoate (3 mg daily) completely prevented the observed ovarian weight loss and increases in granulosa cell apoptosis. Treatment with estradiol benzoate (0.003-3 mg/day) dose dependently suppressed the apoptosis seen 2 days after removal of DES implants. Furthermore, the antiatretogenic effect of estrogen was blocked by treatment with testosterone (0.5 mg twice daily), which increased ovarian apoptotic DNA fragmentation and decreased ovarian weight in DES-treated animals in a time-dependent manner. Also, in situ examination showed that androgen treatment increased apoptosis in the granulosa cells in a subpopulation of early antral and preantral follicles. The specificity of testosterone action was further demonstrated by the lack of effect of progesterone and cortisol on ovarian apoptosis. These data suggest that sex steroids play an important role in the regulation of ovarian apoptotic cell death, with estrogens preventing apoptosis and androgens antagonizing the effect of estrogens. These data provide the basis for future studies on the role of sex steroid hormones in follicular atresia and the regulation of endonuclease activity by steroid hormones.
Recent studies have demonstrated apoptotic DNA fragmentation in the testis of immature rats deprived of gonadotropins. However, the exact cell type undergoing apoptosis during testis development and the age differences of gonadotropin dependence of testis cell apoptosis are unclear. The present study used gel fractionation and in situ methods to quantitate developmental changes of testis cell DNA fragmentation and to localize the specific cell type affected in developing rats with and without treatment with a GnRH antagonist. Apoptotic DNA fragmentation in whole testis was measured in rats between 8-70 days of age. A gradual increase (1.8- to 2.0-fold) in testis apoptotic DNA fragmentation was seen in rats between 16-28 days of age, compared with 8-day-old animals, followed by a decrease in adult animals. To study gonadotropin dependence of testicular apoptosis, serum FSH and, to a lesser extent, LH were suppressed by treatment with a long-acting GnRH antagonist (azaline-B, 250 micrograms/kg body wt, two injections at 2-day intervals). Pretreatment with the GnRH antagonist increased apoptotic DNA fragmentation in rats between 16-32 days of age but not in younger and adult animals demonstrating an age-related change in gonadotropin dependence. To identify the exact testis cell type undergoing apoptosis, in situ analysis of DNA fragmentation was performed. In rats at 16-24 days of age, spermatocytes in selected tubules were found to have increased DNA fragmentation. In contrast, neither Leydig cells nor Sertoli cells were affected. In 32-day-old and adult animals, increased DNA fragmentation was seen in early primary spermatocytes of some tubules. Treatment with GnRH antagonist increased the number of cells with DNA fragmentation as well as percentage of tubules affected. In animals between 16-32 days of age, meiotic spermatocytes were labeled, whereas early spermatids were also labeled in 24- and 32-day-old animals. In adult animals, the level of apoptotic DNA fragmentation was not affected by GnRH antagonist treatment. However, DNA isolated from specific stages of the seminiferous tubules of adult animals showed stage-specific changes of apoptotic DNA fragmentation with 2-fold higher levels found in stages I and XII-XIV compared with stage VIII. In situ analysis of adult testis demonstrated that spermatocytes were the major cell type affected. In conclusion, the present study demonstrated that at least three factors determine the onset of apoptosis of the male germ cells: 1) the developmental stage of the animal; 2) serum levels of gonadotropins, especially FSH; and 3) specific stage of the seminiferous epithelial cycle. The present approach provides the basis for future analysis of the role of gonadotropins and other factors in the regulation of testis cell degeneration in normal and pathological states.
BackgroundBacterial vaginosis (BV), the etiology of which is still uncertain, increases the risk of preterm birth. Recent PCR-based studies suggested that BV is associated with complex vaginal bacterial communities, including many newly recognized bacterial species in non-pregnant women.MethodsTo examine whether these bacteria are also involved in BV in pregnant Japanese women, vaginal fluid samples were taken from 132 women, classified as normal (n = 98), intermediate (n = 21), or BV (n = 13) using the Nugent gram stain criteria, and studied. DNA extracted from these samples was analyzed for bacterial sequences of any Lactobacillus, four Lactobacillus species, and four BV-related bacteria by PCR with primers for 16S ribosomal DNA including a universal Lactobacillus primer, Lactobacillus species-specific primers for L. crispatus, L. jensenii, L. gasseri, and L. iners, and BV-related bacterium-specific primers for BVAB2, Megasphaera, Leptotrichia, and Eggerthella-like bacterium.ResultsThe prevalences of L. crispatus, L. jensenii, and L. gasseri were significantly higher, while those of BVAB2, Megasphaera, Leptotrichia, and Eggerthella-like bacterium were significantly lower in the normal group than in the BV group. Unlike other Lactobacillus species, the prevalence of L. iners did not differ between the three groups and women with L. iners were significantly more likely to have BVAB2, Megasphaera, Leptotrichia, and Eggerthella-like bacterium. Linear regression analysis revealed associations of BVAB2 and Megasphaera with Nugent score, and multivariate regression analyses suggested a close relationship between Eggerthella-like bacterium and BV.ConclusionThe BV-related bacteria, including BVAB2, Megasphaera, Leptotrichia, and Eggerthella-like bacterium, are common in the vagina of pregnant Japanese women with BV. The presence of L. iners may be correlated with vaginal colonization by these BV-related bacteria.
Osteoporosis is a multifactorial trait with low bone mineral density (BMD). We report results of an association study between BMD and nine candidate genes (TGFB1, TGFBR2, SMAD2, SMAD3, SMAD4, IFNB1, IFNAR1, FOS and LRP5), as well as of a case-control study of osteoporosis. Samples for the former association study included 481 general Japanese women. Among the nine candidate genes examined, only LRP5 showed a significant association with BMD. We identified a strong linkage disequilibrium (LD) block within LRP5. Of five LPR5 single nucleotide polymorphisms (SNPs) that are located in the LD block, three gave relatively significant results: Women with the C/C genotype at the c.2220C>T SNP site had higher adjusted BMD (AdjBMD) value compared to those with C/T and T/T (p=0.022); and likewise, G/G at IVS17-30G>A and C/C women at c.3989C>T showed higher AdjBMD than those with G/ A or A/A (p=0.039) and with C/T or T/T (p=0.053), respectively. The case-control study in another series of samples consisting of 126 osteoporotic patients and 131 normal controls also gave a significant difference in allele frequency at c.2220C>T (, 2 =6.737, p=0.009). These results suggest that LRP5 is a BMD determinant and also contributes to a risk of osteoporosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.