Polyurethanes (PU) are the sixth most produced plastics with around 18-million tons in 2016, but since they are not recyclable, they are burned or landfilled, generating damage to human health and ecosystems. To elucidate the mechanisms that landfill microbial communities perform to attack recalcitrant PU plastics, we studied the degradative activity of a mixed microbial culture, selected from a municipal landfill by its capability to grow in a water PU dispersion (WPUD) as the only carbon source, as a model for the BP8 landfill microbial community. The WPUD contains a polyether-polyurethane-acrylate (PE-PU-A) copolymer and xenobiotic additives (N-methylpyrrolidone, isopropanol and glycol ethers). To identify the changes that the BP8 microbial community culture generates to the WPUD additives and copolymer, we performed chemical and physical analyses of the biodegradation process during 25 days of cultivation. These analyses included Nuclear magnetic resonance, Fourier transform infrared spectroscopy, Thermogravimetry, Differential scanning calorimetry, Gel permeation chromatography, and Gas chromatography coupled to mass spectrometry techniques. Moreover, for revealing the BP8 community structure and its genetically encoded potential biodegradative capability we also performed a proximity ligation-based metagenomic analysis. The additives present in the WPUD were consumed early whereas the copolymer was cleaved throughout the 25-days of incubation. The analysis of the biodegradation process and the identified biodegradation products showed that BP8 cleaves esters, CC , and the recalcitrant aromatic urethanes and ether groups by hydrolytic and oxidative mechanisms, both in the soft and the hard segments of the copolymer. The proximity ligation-based metagenomic analysis allowed the reconstruction of five genomes, three of them from novel species. In the metagenome,
Acrylic polymers (AP) are a diverse group of materials with broad applications, frequent use, and increasing demand. Some of the most used AP are polyacrylamide, polyacrylic acid, polymethyl methacrylates, and polyacrylonitrile. Although no information for the production of all AP types is published, data for the most used AP is around 9 MT/year, which gives an idea of the amount of waste that can be generated after products' lifecycles. After its lifecycle ends, the fate of an AP product will depend on its chemical structure, the environmental setting where it was used, and the regulations for plastic waste management existing in the different countries. Even though recycling is the best fate for plastic polymer wastes, few AP can be recycled, and most of them end up in landfills. Because of the pollution crisis the planet is immersed, setting regulations and developing technological strategies for plastic waste management are urgent. In this regard, biotechnological approaches, where microbial activity is involved, could be attractive eco-friendly strategies. This mini-review describes the broad AP diversity, their properties and uses, and the factors affecting their biodegradability, underlining the importance of standardizing biodegradation quantification techniques. We also describe the enzymes and metabolic pathways that microorganisms display to attack AP chemical structure and predict some biochemical reactions that could account for quaternary carbon-containing AP biodegradation. Finally, we analyze strategies to increase AP biodegradability and stress the need for more studies on AP biodegradation and developing stricter legislation for AP use and waste control. Key points• Acrylic polymers (AP) are a diverse and extensively used group of compounds.• The environmental fates and health effects of AP waste are not completely known.• Microorganisms and enzymes involved in AP degradation have been identified.• More biodegradation studies are needed to develop AP biotechnological treatments.
The molecular mechanisms underlying the biodegradation of -methylpyrrolidone (NMP), a widely used industrial solvent that produces skin irritation in humans and is teratogenic in rats, are unknown. sp. strain BQ1 degrades NMP. By studying a transposon-tagged mutant unable to degrade NMP, we identified a six-gene cluster () that is transcribed as a polycistronic mRNA and encodes enzymes involved in NMP biodegradation. and the transposon-affected gene encode an -methylhydantoin amidohydrolase that transforms NMP to γ--methylaminobutyric acid; this is metabolized by an amino acid oxidase (NMPC), either by demethylation to produce γ-aminobutyric acid (GABA) or by deamination to produce succinate semialdehyde (SSA). If GABA is produced, the activity of a GABA aminotransferase (GABA-AT), not encoded in the gene cluster, is needed to generate SSA. SSA is transformed by a succinate semialdehyde dehydrogenase (SSDH) (NMPF) to succinate, which enters the Krebs cycle. The abilities to consume NMP and to utilize it for growth were complemented in the transposon-tagged mutant by use of the genes. Similarly, MG1655, which has two SSDHs but is unable to grow in NMP, acquired these abilities after functional complementation with these genes. In wild-type (wt) BQ1 cells growing in NMP, GABA was not detected, but SSA was present at double the amount found in cells growing in Luria-Bertani medium (LB), suggesting that GABA is not an intermediate in this pathway. Moreover, GABA-AT deletion mutants complemented with genes retained the ability to grow in NMP, supporting the possibility that γ--methylaminobutyric acid is deaminated to SSA instead of being demethylated to GABA.-Methylpyrrolidone is a cyclic amide reported to be biodegradable. However, the metabolic pathway and enzymatic activities for degrading NMP are unknown. By developing molecular biology techniques for sp. strain BQ1, an environmental bacterium able to grow in NMP, we identified a six-gene cluster encoding enzymatic activities involved in NMP degradation. These findings set the basis for the study of new enzymatic activities and for the development of biotechnological processes with potential applications in bioremediation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.