Central oxytocin (OXT) has anxiolytic and pro-social properties both in humans and rodents, and has been proposed as a therapeutic option for anxiety and social dysfunctions. Here, we utilized a mouse model of social fear conditioning (SFC) to study the effects of OXT on social fear, and to determine whether SFC causes alterations in central OXT receptor (OXTR) binding and local OXT release. Central infusion of OXT, but not arginine vasopressin, prior to social fear extinction training completely abolished social fear expression in an OXTR-mediated fashion without affecting general anxiety or locomotion. SFC caused increased OXTR binding in the dorso-lateral septum (DLS), central amygdala, dentate gyrus, and cornu ammunis 1, which normalized after social fear extinction, suggesting that these areas form part of a brain network involved in the development and neural support of social fear. Microdialysis revealed that the increase in OXT release observed in unconditioned mice within the DLS during social fear extinction training was attenuated in conditioned mice. Consequently, increasing the availability of local OXT by infusion of OXT into the DLS reversed social fear. Thus, alterations in the brain OXT system, including altered OXTR binding and OXT release within the DLS, play an important role in SFC and social fear extinction. Thus, we suggest that the OXT system is adversely affected in disorders associated with social fear, such as social anxiety disorder and reinstalling an appropriate balance of the OXT system may alleviate some of the symptoms.
Oxytocin (OXT)-mediated behavioral responses to social and stressful cues have extensively been studied in male rodents. Here, we investigated the capacity of brain OXT receptor (OXTR) signaling in the lateral septum (LS) to prevent social fear expression in female mice using the social-fear-conditioning paradigm. Utilizing the activated OXT system during lactation, we show that lactating mice did not express fear 24 hr after social fear conditioning. Supporting the role of OXTR signaling in the LS in attenuation of social fear, synthetic OXT infusion or overexpression of OXTR in the LS diminished social fear expression, whereas constitutive OXTR knockout severely impaired social fear extinction in virgin mice. Subsequently, both pharmacological blockade of local OXTRs in the LS and chemogenetic silencing of supraoptic nucleus OXTergic afferents to the LS increased social fear expression in lactating mice. Hence, LS-projecting OXT neurons suppress social fear in female mice.
Major depressive disorder is often associated with deficits in social and cognitive functioning. Mice transgenic for acid sphingomyelinase (t-ASM) were previously shown to have a depressive-like phenotype, which could be normalized by antidepressant treatment. Here, we investigated whether t-ASM mice show deficits in social behavior and memory performance, and whether these possible deficits might be normalized by amitriptyline treatment. Our results revealed that ASM overexpression altered the behavior of mice in a sex-dependent manner. As such, t-ASM female, but not male, mice showed an impaired social preference and a depressive- and anxiogenic-like phenotype, which could be normalized by amitriptyline treatment. Both male and female t-ASM mice showed unaltered preference for social novelty, novel object recognition, and social and object discrimination abilities. Amitriptyline treatment impaired novel object recognition and object discrimination abilities in female, but not in male, wild-type mice, while female t-ASM mice showed unaltered novel object recognition and object discrimination abilities. This study suggests that female t-ASM mice represent a model of depression with comorbid anxiety and social deficits, without memory impairments. It further suggests that ASM overexpression has a protective role against the detrimental effects of amitriptyline on female, but not on male, non-social (object) memory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.