The selector-free single-frequency operation of an Yb-doped fiber laser with scanning in the range of ∼20 nm is demonstrated. The frequency and intensity evolution is shown to be driven by a self-induced phase grating in the active fiber defined by gain saturation in a standing-wave. A theory has been developed that describes well the main features of the experiment and provides possibilities for optimization of laser parameters. Perspectives for utilizing the self-scanned laser in fundamental studies and practical applications are discussed.
The effect of broad-range (16 nm) self-sweeping of a narrow-line (less than 1 pm) Yb-doped fiber laser has been demonstrated experimentally. It is found that the effect arises from the self-sustained relaxation oscillations. As a result, the sweeping rate increases as square root of the laser power and decreases with increasing cavity length. Based on these results we propose a model describing dynamics of the laser frequency. The model takes into account the effects of gain saturation at the laser transition and spatial hole burning in the self-pulsing regime.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.