Long dynamic population gratings (DPGs) formed in rare-earth-doped fibers have unique spectral characteristics compared to other types of fiber gratings, making them suitable for controlling the spectral composition of lasers. Depending on the type, length, and position of the DPGs in the cavities of lasers, they can be used for various purposes, ranging from the stabilization of single-frequency radiation to regular wavelength self-sweeping (WLSS) operation. Lasers based on DPGs are sources of narrow-band radiation with a fixed or sweeping generation spectrum. One of the main advantages of such lasers is the simplicity of their design, since they do not require special spectral elements or drivers for spectrum control. In this paper, we review the research progress on fiber lasers based on DPGs. The basic working principles of different types of DPGs will be introduced in the theoretical section. The operation of lasers based on absorption and gain DPGs and their practical applications will be discussed and summarized in experimental section. Finally, the main challenges for the development of such lasers will be presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.