Using a shake-table, the effects of several stone pebble layer parameters (the layer thickness, the fraction of pebbles, the pebble compaction, the pebble moisture, the vertical contact stress below the foundation, and the effect of repeated excitations) on layer aseismic efficiency were investigated. For each considered parameter, a model of a rigid building on an aseismic layer was exposed to four different accelerograms, with three levels of peak ground acceleration (PGA), while all other layer parameters were kept constant. For each test, the characteristic displacements and accelerations were measured. Based on the test results, the main conclusions regarding the effect of the considered parameters on the effectiveness of the adopted aseismic layer are given.
The possibility of the use of a layer of natural material under foundations for seismic base isolation was investigated. The dissipation of seismic energy of a low-cost natural material with adequate thickness, bearing capacity, and lateral and vertical stiffness, which can serve as an optimal solution for seismic base isolation under the foundations of many structures, was tested. This paper presents the results of a brief experimental study to determine the effectiveness of ordinary limestone sand under the foundation of a cantilever concrete column to increase its seismic resistance. The behavior of small-scale columns with three substrates below the foundation (rigid base, the thin layer of limestone sand, and the thick layer of limestone sand) was investigated by the shake table. The column was exposed to a set of horizontal base accelerations until structure collapse. It was concluded that a layer of limestone sand of appropriate thickness and compressibility can serve as the means a seismic base isolation. The nonlinear numerical model for the dynamic analysis of planar concrete structures coupled with soil is briefly presented and verified by the performed experimental tests.
The results of a shake table study of the efficiency of a seismic base isolation using a layer of natural stone pebbles are presented. Models of stiff and medium-stiff buildings were tested. Case studies were conducted with the foundation of model on the rigid base and on four different layers of pebbles (thin and thick layer with small and large pebbles). Four different horizontal accelerograms were applied, and the characteristic displacements, accelerations, and strains were measured. Strains/stresses of the tested models remained in the elastic area. It was concluded that the effectiveness of the stone pebble layer under the foundation, i.e., the reduction in the seismic forces and stresses in the structure compared to the classical solution of foundation, significantly depends on the type of the applied excitation and depends relatively little on the layer thickness and pebble fraction. The results of the study showed that a layer of pebbles can significantly reduce the peak acceleration and strains/stresses of the model, with acceptable displacements. Further research is expected to confirm the effectiveness of this low-cost and low-tech seismic base isolation and to pave the way to its practical application.
The paper presents the testing results of a small scale model of cantilever concrete columns on a shake table, with varying stirrup spacing. During the test, earthquake accelerations were gradually increased. Displacements and accelerations at the top of the earthquake‐like columns, as well as the strains in the concrete, vertical bars and stirrups in characteristic points, were measured during each shake table excitation. It was concluded that the distance between stirrups in the concrete column has a significant effect on the size of the cracking zone in the concrete, as well as on the number, location, spacing and width of cracks. By reducing the distance between the stirrups, columns becomes stiffer. That leads to smaller displacements and slightly larger inertial forces under excitation with low accelerations. Maximum displacements at the top of the column with denser stirrups are slightly smaller and the crack zone and crack width in concrete is therefore significantly reduced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.