Laccases are multicopper oxidases, which have been widely investigated in recent decades thanks to their ability to oxidize organic substrates to the corresponding radicals while producing water at the expense of molecular oxygen. Besides their successful (bio)technological applications, for example, in textile, petrochemical, and detoxifications/bioremediations industrial processes, their synthetic potentialities for the mild and green preparation or selective modification of fine chemicals are of outstanding value in biocatalyzed organic synthesis. Accordingly, this review is focused on reporting and rationalizing some of the most recent and interesting synthetic exploitations of laccases. Applications of the so-called laccase-mediator system (LMS) for alcohol oxidation are discussed with a focus on carbohydrate chemistry and natural products modification as well as on bio- and chemo-integrated processes. The laccase-catalyzed Csp2-H bonds activation via monoelectronic oxidation is also discussed by reporting examples of enzymatic C-C and C-O radical homo- and hetero-couplings, as well as of aromatic nucleophilic substitutions of hydroquinones or quinoids. Finally, the laccase-initiated domino/cascade synthesis of valuable aromatic (hetero)cycles, elegant strategies widely documented in the literature across more than three decades, is also presented.
Hot spring metagenomes, prepared from samples collected at temperatures ranging from 55 to 95 °C, were submitted to an in silico screening aimed at the identification of novel amine transaminases (ATAs), valuable biocatalysts for the preparation of optically pure amines. Three novel (S)-selective ATAs, namely Is3-TA, It6-TA, and B3-TA, were discovered in the metagenome of samples collected from hot springs in Iceland and in Italy, cloned from the corresponding metagenomic DNAs and overexpressed in recombinant form in E. coli. Functional characterization of the novel ATAs demonstrated that they all possess a thermophilic character and are capable of performing amine transfer reactions using a broad range of donor and acceptor substrates, thus suggesting a good potential for practical synthetic applications. In particular, the enzyme B3-TA revealed to be exceptionally thermostable, retaining 85% of activity after 5 days of incubation at 80 °C and more than 40% after 2 weeks under the same condition. These results, which were in agreement with the estimation of an apparent melting temperature around 88 °C, make B3-TA, to the best of our knowledge, the most thermostable natural ATA described to date. This biocatalyst showed also a good tolerance toward different water-miscible and water-immiscible organic solvents. A detailed inspection of the homology-based structural model of B3-TA showed that the overall active site architecture of mesophilic (S)-selective ATAs was mainly conserved in this hyperthermophilic homolog. Additionally, a subfamily of B3-TA-like transaminases, mostly uncharacterized and all from thermophilic microorganisms, was identified and analyzed in terms of phylogenetic relationships and sequence conservation.
The treatment of malaria, the most common parasitic disease worldwide and the third deadliest infection after HIV and tuberculosis, is currently compromised by the dramatic increase and diffusion of drug resistance among the various species of Plasmodium, especially P. falciparum (Pf). In this view, the development of new antiplasmodial agents that are able to act via innovative mechanisms of action, is crucial to ensure efficacious antimalarial treatments. In one of our previous communications, we described a novel class of compounds endowed with high antiplasmodial activity, characterized by a pharmacophore never described before as antiplasmodial and identified by their 4,4’‐oxybisbenzoyl amide cores. Here, through a detailed structure‐activity relationship (SAR) study, we thoroughly investigated the chemical features of the reported scaffolds and successfully built a novel antiplasmodial agent active on both chloroquine (CQ)‐sensitive and CQ‐resistant Pf strains in the low nanomolar range, without displaying cross‐resistance. Moreover, we conducted an in silico pharmacophore mapping.
Herein we propose a facile, versatile and selective chemo-enzymatic synthesis of substituted (E)-2,3-diaryl-5-styryl-trans-2,3-dihydrobenzofurans based on the exploitation of the laccase-mediated oxidative (homo)coupling of (E)-4-styrylphenols. Thanks to this novel synthetic strategy, a library of benzofuran-based potential allosteric activators of the Heat shock protein 90 (Hsp90) was easily prepared. Moreover, considering their structural analogies to previously reported allosteric modulators, the sixteen new compounds synthesized in this work were tested in vitro for their potential stimulatory action on the ATPase activity of the molecular chaperone Hsp90. Combining experimental and computational results, we propose a mechanism of action for these compounds, and expand the structure-activity relationship (SAR) information available for benzofuran-based Hsp90 activators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.