A major cause of the paucity of new starting points for drug discovery is the lack of interaction between academia and industry. Much of the global resource in biology is present in universities, whereas the focus of medicinal chemistry is still largely within industry. Open source drug discovery, with sharing of information, is clearly a first step towards overcoming this gap. But the interface could especially be bridged through a scale-up of open sharing of physical compounds, which would accelerate the finding of new starting points for drug discovery. The Medicines for Malaria Venture Malaria Box is a collection of over 400 compounds representing families of structures identified in phenotypic screens of pharmaceutical and academic libraries against the Plasmodium falciparum malaria parasite. The set has now been distributed to almost 200 research groups globally in the last two years, with the only stipulation that information from the screens is deposited in the public domain. This paper reports for the first time on 236 screens that have been carried out against the Malaria Box and compares these results with 55 assays that were previously published, in a format that allows a meta-analysis of the combined dataset. The combined biochemical and cellular assays presented here suggest mechanisms of action for 135 (34%) of the compounds active in killing multiple life-cycle stages of the malaria parasite, including asexual blood, liver, gametocyte, gametes and insect ookinete stages. In addition, many compounds demonstrated activity against other pathogens, showing hits in assays with 16 protozoa, 7 helminths, 9 bacterial and mycobacterial species, the dengue fever mosquito vector, and the NCI60 human cancer cell line panel of 60 human tumor cell lines. Toxicological, pharmacokinetic and metabolic properties were collected on all the compounds, assisting in the selection of the most promising candidates for murine proof-of-concept experiments and medicinal chemistry programs. The data for all of these assays are presented and analyzed to show how outstanding leads for many indications can be selected. These results reveal the immense potential for translating the dispersed expertise in biological assays involving human pathogens into drug discovery starting points, by providing open access to new families of molecules, and emphasize how a small additional investment made to help acquire and distribute compounds, and sharing the data, can catalyze drug discovery for dozens of different indications. Another lesson is that when multiple screens from different groups are run on the same library, results can be integrated quickly to select the most valuable starting points for subsequent medicinal chemistry efforts.
The gametocyte pLDH assay is fast, easy to perform, cheap and reproducible and is suitable for screening novel transmission-blocking compounds, which does not require parasite transgenic lines.
The results of Fe2+‐induced decomposition of the clinically used artemisinins, artemisone, other aminoartemisinins, 10‐deoxoartemisinin, and the 4‐fluorophenyl derivative have been compared with their antimalarial activities and their ability to inhibit the parasite SERCA PfATP6. The clinical artemisinins and artemisone decompose under aqueous conditions to give mixtures of C radical marker products, carbonyl compounds, and reduction products. The 4‐fluorophenyl derivative and aminoartemisinins tend to be inert to aqueous iron(II) sulfate and anhydrous iron(II) acetate. Anhydrous iron(II) bromide enhances formation of the carbonyl compounds and provides a deoxyglycal from DHA and enamines from the aminoartemisinins. Ascorbic acid (AA) accelerates the aqueous Fe2+‐mediated decompositions, but does not alter product distribution. 4‐Oxo‐TEMPO intercepts C radicals from a mixture of an antimalaria‐active trioxolane, 10‐deoxoartemisinin, and anhydrous iron(II) acetate to give trapped products in 73 % yield from the trioxolane, and 3 % from the artemisinin. Artemisone provides a trapped product in 10 % yield. Thus, in line with its structural rigidity, only the trioxolane provides a C radical eminently suited for intermolecular trapping. In contrast, the structural flexibility of the C radicals from the artemisinins allows facile extrusion of Fe2+ and collapse to benign isomerization products. The propensity towards the formation of radical marker products and intermolecular radical trapping have no relationship with the in vitro antimalarial activities of the artemisinins and trioxolane. Desferrioxamine (DFO) attenuates inhibition of PfATP6 by, and antagonizes antimalarial activity of, the aqueous Fe2+‐susceptible artemisinins, but has no overt effect on the aqueous Fe2+‐inert artemisinins. It is concluded that the C radicals cannot be responsible for antimalarial activity and that the Fe2+‐susceptible artemisinins may be competitively decomposed in aqueous extra‐ and intracellular compartments by labile Fe2+, resulting in some attenuation of their antimalarial activities. Interpretations of the roles of DFO and AA in modulating antimalarial activities of the artemisinins, and a comparison with antimalarial properties of simple hydroperoxides and their behavior towards thapsigargin‐sensitive SERCA ATPases are presented. The general basis for the exceptional antimalarial activities of artemisinins in relation to the intrinsic activity of the peroxide within the uniquely stressed environment of the malaria parasite is thereby adumbrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.