Miscanthus is a perennial energy crop that produces high yields and has the potential to be converted into energy. The ultimate analysis determines the composition of the biomass and the energy value in terms of the higher heating value (HHV), which is the most important parameter in determining the quality of the fuel. In this study, an artificial neural network (ANN) model based on the principle of supervised learning was developed to predict the HHV of miscanthus biomass. The developed ANN model was compared with the models of predictive regression models (suggested from the literature) and the accuracy of the developed model was determined by the coefficient of determination. The paper presents data from 192 miscanthus biomass samples based on ultimate analysis and HHV. The developed model showed good properties and the possibility of prediction with high accuracy (R2 = 0.77). The paper proves the possibility of using ANN models in practical application in determining fuel properties of biomass energy crops and greater accuracy in predicting HHV than the regression models offered in the literature.
The aim of this study was to investigate the potential of using structural analysis parameters for estimating the higher heating value (HHV) of biomass by obtaining information on the composition of cellulose, lignin, and hemicellulose. To achieve this goal, several nonlinear mathematical models were developed, including polynomials, support vector machines (SVMs), random forest regression (RFR) and artificial neural networks (ANN) for predicting HHV. The performed statistical analysis “goodness of fit” showed that the ANN model has the best performance in terms of coefficient of determination (R2 = 0.90) and the lowest level of model error for the parameters X2 (0.25), RMSE (0.50), and MPE (2.22). Thus, the ANN model was identified as the most appropriate model for determining the HHV of different biomasses based on the specified input parameters. In conclusion, the results of this study demonstrate the potential of using structural analysis parameters as input for HHV modeling, which is a promising approach for the field of biomass energy production. The development of the model ANN and the comparative analysis of the different models provide important insights for future research in this field.
In this study, an evaluation of food waste generation was conducted, using images taken before and after the daily meals of people aged between 20 and 30 years in Serbia, for the period between January 1st and April 31st in 2022. A convolutional neural network (CNN) was employed for the tasks of recognizing food images before the meal and estimating the percentage of food waste according to the photographs taken. Keeping in mind the vast variates and types of food available, the image recognition and validation of food items present a generally very challenging task. Nevertheless, deep learning has recently been shown to be a very potent image recognition procedure, while CNN presents a state-of-the-art method of deep learning. The CNN technique was implemented to the food detection and food waste estimation tasks throughout the parameter optimization procedure. The images of the most frequently encountered food items were collected from the internet to create an image dataset, covering 157 food categories, which was used to evaluate recognition performance. Each category included between 50 and 200 images, while the total number of images in the database reached 23,552. The CNN model presented good prediction capabilities, showing an accuracy of 0.988 and a loss of 0.102, after the network training cycle. The average food waste per meal, in the frame of the analysis in Serbia, was 21.3%, according to the images collected for food waste evaluation.
At the beginning and during the development of civilization, natural sources were the only available source of energy. With the development of society and industry, they were replaced by intensive use of fossil fuels. Non-renewability and negative impact on the environment called into question the rationality of using such sources. Therefore, natural sources of energy are becoming more and more important, especially biomass, which is becoming an important source of energy due to its ecological advantages. There are numerous ways to convert agricultural biomass into different forms of biofuel. Thermochemical conversion includes a process of pyrolysis in which, under the influence of a high temperature of 400 to 600 °C without the presence of oxygen, very valuable products are obtained in the form of biochar. The aim of this research is to evaluate the energy properties of agricultural biomass (corn, wheat, barley, oats, triticale, rye, soybeans, rapeseed and sunflower) by thermochemical conversion by pyrolysis and analysis of biochar for the evaluation of value-added products and to suggest its application. The mentioned raw materials are characterized by significant pyrolytic conversion potential, i.e. biochar production ranged from 30.03% to 47.0%. Similarly, the heating value (HHV) of biochar after the pyrolysis process increased to 27.11 MJ/kg, which proves that agricultural biomass is a good source of energy per unit mass.
Miscanthus and Virginia Mallow are energy crops characterized by high yields, perenniality, and low agrotechnical requirements and have great potential for solid and liquid biofuel production. Later harvest dates result in lower yields but better-quality mass for combustion, while on the other hand, when biomass is used for biogas production, harvesting in the autumn gives better results due to lower lignin content and higher moisture content. The aim of this work was to determine not only the influence of the harvest date on the energetic properties but also how accurately artificial neural networks can predict the given parameters. The yield of dry matter in the first year of experimentation for this research was on average twice as high in spring compared to autumn for Miscanthus (40 t/ha to 20 t/ha) and for Virginia Mallow (11 t/ha to 8 t/ha). Miscanthus contained 52.62% carbon in the spring, which is also the highest percentage determined in this study, while Virginia Mallow contained 51.51% carbon. For both crops studied, delaying the harvest date had a positive effect on ash content, such that the ash content of Miscanthus in the spring was about 1.5%, while in the autumn it was 2.2%. Harvest date had a significant effect on the increase of lignin in both plants, while Miscanthus also showed an increase in cellulose from 47.42% in autumn to 53.5% in spring. Artificial neural networks used to predict higher and lower heating values showed good results with lower errors when values obtained from biomass elemental composition were used as input parameters than those obtained from proximity analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.