Developmental studies of the central catecholaminergic (CA) system are essential for understanding its evolution. To obtain knowledge about the CA system in chondrichthyans, an ancient gnathostome group, we used immunohistochemical techniques for detecting tyrosine hydroxylase (TH), the initial rate-limiting enzyme of the CA synthesis, to study: 1) the neuromery of developing TH-immunoreactive (ir) neuronal populations, 2) the development of TH-ir innervation, and 3) the organization of TH-ir cells and fibers in the brain of postembryonic stages of the shark Scyliorhinus canicula. The first TH-ir cells appeared in the hypothalamus and rostral diencephalon (suprachiasmatic, posterior recess and posterior tubercle nuclei at embryonic stage 26, and dorsomedial hypothalamus at stage 28); then in more caudal basal regions of the diencephalon and rostral mesencephalon (substantia nigra/ventral tegmental area); and later on in the anterior (locus coeruleus/nucleus subcoeruleus) and posterior (vagal lobe and reticular formation) rhombencephalon. The appearance of TH-ir cells in the telencephalon (pallium) was rather late (stage [S]31) with respect to the other TH-ir prosencephalic populations. The first TH-ir fibers arose from cells of the posterior tubercle (S30) and formed recognizable ascending (toward dorsal and rostral territories) and descending pathways at S31. When the second half of embryonic development started (S32), TH-ir fibers innervated most brain areas, and nearly all TH-ir cell groups of the postembryonic brain were already established. This study provides key information about the evolution of the developmental patterns of central CA systems in fishes and thus may help in understanding how the vertebrate CA systems have evolved.
About 80% of functional genes in the human genome are expressed in the brain and over 1,200 different genes have been associated with the pathogenesis of CNS disorders and dementia. Pharmacogenetic studies of psychotropic drug response have focused on determining the relationship between variations in specific candidate genes and the positive and adverse effects of drug treatment. Approximately, 18% of neuroleptics are substrates of CYP1A2 enzymes, 40% of CYP2D6, and 23% of CYP3A4; 24% of antidepressants are substrates of CYP1A2 enzymes, 5% of CYP2B6, 38% of CYP2C19, 85% of CYP2D6, and 38% of CYP3A4; 7% of benzodiazepines are substrates of CYP2C19 enzymes, 20% of CYP2D6, and 95% of CYP3A4. 10-20% of Western populations are defective in genes of the CYP superfamily; and the pharmacogenomic response of psychotropic drugs also depends on genetic variants associated with dementia. Prospective studies with anti-dementia drugs or with multifactorial strategies have revealed that the therapeutic response to conventional drugs in Alzheimer’s disease is genotype-specific. The disease-modifying effects (cognitive performance, biomarker modification) of therapeutic intervention are APOE-dependent, with APOE-4 carriers acting as the worst responders (APOE-3/3 > APOE-3/4 > APOE-4/4). APOE-CYP2D6 interactions also influence the therapeutic outcome in patients with dementia.
Chondrychthyans (cartilaginous fishes) are key to understanding the ancestral gnathostome condition since they provide an outgroup to sarcopterygians and actinopterygians. To gain comparative knowledge about the development of the vertebrate serotoninergic systems, we studied by immunohistochemistry the origin, spatiotemporal organization, and migration patterns of serotonin-containing neurons and the growth of axonal pathways in the central nervous system of a shark, the lesser spotted dogfish. Hindbrain serotonin-immunoreactive cells arose close to the floor plate and most populations migrated ventrally and mediolaterally to form the various raphe and reticular groups. The order of appearance of serotoninergic populations in the rhombencephalon and spinal cord (first the superior groups and then the inferior and spinal populations) roughly matched with that reported in other vertebrates but important differences were noted in the formation of prosencephalic groups in fishes. In addition to preoptic and hypothalamic areas, serotoninergic cerebrospinal fluid-contacting cells were observed in the isthmus (raphe dorsalis anterioris). Transient serotonin-immunoreactive cells were noted in the pineal organ, habenula, and pretectum. Further, we provide a revised anatomical framework for reticular and raphe serotoninergic populations considering their origin and segmental organization. Two distinct phases of development of the serotoninergic innervation were distinguished, that of the formation of the main axonal pathways and that of the branching of fibers. The development of main serotoninergic ascending pathways in dogfish was notably similar to that described in mammals. Our findings suggest the conservation of developmental patterns in serotoninergic systems and enhance the importance of elasmobranchs for understanding the early evolution of this system in vertebrates.
Dementia is a major problem of health in developed societies. Alzheimer's disease (AD), vascular dementia, and mixed dementia account for over 90% of the most prevalent forms of dementia. Both genetic and environmental factors are determinant for the phenotypic expression of dementia. AD is a complex disorder in which many different gene clusters may be involved. Most genes screened to date belong to different proteomic and metabolomic pathways potentially affecting AD pathogenesis. The ε4 variant of the APOE gene seems to be a major risk factor for both degenerative and vascular dementia. Metabolic factors, cerebrovascular disorders, and epigenetic phenomena also contribute to neurodegeneration. Five categories of genes are mainly involved in pharmacogenomics: genes associated with disease pathogenesis, genes associated with the mechanism of action of a particular drug, genes associated with phase I and phase II metabolic reactions, genes associated with transporters, and pleiotropic genes and/or genes associated with concomitant pathologies. The APOE and CYP2D6 genes have been extensively studied in AD. The therapeutic response to conventional drugs in patients with AD is genotype specific, with CYP2D6-PMs, CYP2D6-UMs, and APOE-4/4 carriers acting as the worst responders. APOE and CYP2D6 may cooperate, as pleiotropic genes, in the metabolism of drugs and hepatic function. The introduction of pharmacogenetic procedures into AD pharmacological treatment may help to optimize therapeutics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.