Cladistians (Polypteriformes) are currently considered basal to other living ray-finned fishes (actinopterygians), and their brain organization is therefore critical to providing information about the primitive neural characters that existed in the earliest ray-finned fishes. The organization of the serotonergic system in the brain has been carefully analyzed in most vertebrate groups, and in the present study we provide the first detailed information on the distribution of serotonergic cell bodies and fibers in the central nervous system of representative species of the two extant genera of cladistians, i.e. Polypterus senegalus and Erpetoichthys calabaricus, by means of immunohistochemistry against serotonin (5-HT). Distinct groups of immunoreactive cells were detected in the preoptic area, the hypothalamic paraventricular organ, the pineal organ, the pretectal region, the long column of the raphe in the rhombencephalic midline, the spinal cord, and amacrine cells in the inner nuclear layer of the retina. Fiber labeling was widely distributed in all main brain subdivisions but was more abundant in distinct pallial and subpallial areas, the preoptic area, the thalamus, the optic tectum, the tori semicircularis and lateralis, the rhombencephalic reticular formation, the nucleus of the solitary tract, and the dorsal aspect of the spinal cord. Our analysis makes it possible to establish which serotonergic structures characterized the earliest ray-finned fishes, and a comparison of these results with those from other classes of vertebrates, including a segmental analysis to correlate cell populations, reveals that most characteristics, such as the presence of serotonergic cells in the preoptic area and the basal hypothalamus, are preserved in all anamniotes. However, this system seems to be reduced in amniotes, mainly mammals, although important features are shared, such as the presence of serotonergic cells in the pineal organ, the retina, and the raphe nuclei.