The potential genotoxicity and antigenotoxicity of non-photoactivated hypericin was investigated in five experimental models. Hypericin was non-mutagenic in the Ames assay, with and without metabolic activation. It did not exert a protective effect against mutagenicity induced by 9-aminoacridine. In a yeast (Saccharomyces cerevisiae) assay, hypericin did not increase the frequency of mitotic crossovers or total aberrants at the ade(2) locus, the number of convertants at the trp5 locus, or the number of revertants at the ilv1 locus. In combined application with 4-nitroquinoline-1-oxide, it significantly enhanced the number of revertants at the ilv1 locus at the highest concentration used. Hypericin was not mutagenic in the alga Chlamydomonas reinhardtii. However, in combined application with methyl methane sulfonate, toxicity and mutagenicity were slightly reduced. In a chromosome aberration assay using three mammalian cell lines, hypericin did not alter the frequency of structural chromosome aberrations, and in the DPPH radical scavenging assay, it did not exert any antioxidant effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.