Adding noise to a system can ‘improve’ its dynamic behaviour, for example, it can increase its response or signal-to-noise ratio. The corresponding phenomenon, called stochastic resonance, has found numerous applications in physics, neuroscience, biology, medicine and mechanics. Replacing stochastic excitations with high-frequency ones was shown to be a viable approach to analysing several linear and nonlinear dynamic systems. For these systems, the influence of the stochastic and high-frequency excitations appears to be qualitatively similar. The present paper concerns the discussion of the applicability of this ‘deterministic’ approach to stochastic systems. First, the conventional nonlinear bi-stable system is briefly revisited. Then dynamical systems with multiplicative noise are considered and the validity of replacing stochastic excitations with deterministic ones for such systems is discussed. Finally, we study oscillatory systems with nonlinear damping and analyse the effects of stochastic and deterministic excitations on such systems.
This article is part of the theme issue ‘Vibrational and stochastic resonance in driven nonlinear systems (part 1)’.
Аннотация Цель: получение асимптотически строгих выражений для функций распределения пар молекул внутри фронта ударной волны. Процедура и методы. В работе использовались асимптотические методы теоретической физики, основанные на выделении малых параметров. Результаты. Получено асимптотически точное выражение для функции распределения пар молекул тяжёлого компонента ударно сжатой бинарной смеси газов в начале его поступательной релаксации. Теоретическая и практическая значимость. Этот результат чрезвычайно существенен для экспериментального моделирования эффекта высокоскоростного перехлёста в ударных трубах. Ключевые слова: кинетическое уравнение, неравновесный, смесь газов, ударная волна. Благодарности. Работа выполнена в рамках гранта РФФИ 20-07-00740 А. Исследование выполнено в рамках гранта Президента РФ для молодых учёных -кандидатов наук МК-1330.2020.9.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.