The need to replan arises in many applications. However, in the context of planning as heuristic search, it raises an annoying problem: if the previous plan is still executing, what should the new plan search take as its initial state? If it were possible to accurately predict how long replanning would take, it would be easy to find the appropriate state at which control will transfer from the previous plan to the new one. But as planning problems can vary enormously in their difficulty, this prediction can be difficult. Many current systems merely use a manually chosen constant duration. In this paper, we show how such ad hoc solutions can be avoided by integrating the choice of the appropriate initial state into the search process itself. The search is initialized with multiple candidate initial states and a time-aware evaluation function is used to prefer plans whose total goal achievement time is minimal. Experimental results show that this approach yields better behavior than either guessing a constant or trying to predict replanning time in advance. By making replanning more effective and easier to implement, this work aids in creating planning systems that can better handle the inevitable exigencies of real-world execution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.