In this article we describe recent progress on the design, analysis and implementation of hybrid numerical-asymptotic boundary integral methods for boundary value problems for the Helmholtz equation that model time harmonic acoustic wave scattering in domains exterior to impenetrable obstacles. These hybrid methods combine conventional piecewise polynomial approximations with high-frequency asymptotics to build basis functions suitable for representing the oscillatory solutions. They have the potential to solve scattering problems accurately in a computation time that is (almost) independent of frequency and this has been realized for many model problems. The design and analysis of this class of methods requires new results on the analysis and numerical analysis of highly oscillatory boundary integral operators and on the high-frequency asymptotics of scattering problems. The implementation requires the development of appropriate quadrature rules for highly oscillatory integrals. This article contains a historical account of the development of this currently very active field, a detailed account of recent progress and, in addition, a number of original research results on the design, analysis and implementation of these methods. * Colour online for monochrome figures available at journals.cambridge.org/anu.
In this paper we analyze the numerical approximation of diffusion problems over polyhedral domains in R d (d = 1, 2, 3), with diffusion coefficient a(x, ω) given as a lognormal random field, i.e., a(x, ω) = exp(Z (x, ω)) where x is the spatial variable and Z (x, ·) is a Gaussian random field. The analysis presents particular challenges since the corresponding bilinear form is not uniformly bounded away from 0 or ∞ over all possible realizations of a. Focusing on the problem of computing the expected value of linear functionals of the solution of the diffusion problem, we give a rigorous error analysis for methods constructed from (1) standard continuous and piecewise linear finite element approximation in physical space; (2) truncated Karhunen-Loève expansion for computing realizations of a (leading to a possibly high-dimensional parametrized deterministic diffusion problem); and (3) lattice-based quasi-Monte Carlo (QMC) quadrature rules for computing integrals over parameter space which define the expected values. The paper contains novel error analysis which accounts for the effect of all three types of approximation. The QMC analysis is based
We propose a new robust method for the computation of scattering of highfrequency acoustic plane waves by smooth convex objects in 2D. We formulate this problem by the direct boundary integral method, using the classical combined potential approach. By exploiting the known asymptotics of the solution, we devise particular expansions, valid in various zones of the boundary, which express the solution of the integral equation as a product of explicit oscillatory functions and more slowly varying unknown amplitudes. The amplitudes are approximated by polynomials (of minimum degree d) in each zone using a Galerkin scheme. We prove that the underlying bilinear form is continuous in L 2 , with a continuity constant that grows mildly in the wavenumber k. We also show that the bilinear form is uniformly L 2 -coercive, independent of k, for all k sufficiently large. (The latter result depends on rather delicate Fourier analysis and is restricted in 2D to circular domains, but it also applies to spheres in higher dimensions.) Using these results and the asymptotic expansion of the solution, we prove superalgebraic convergence of our numerical method as d → ∞ for fixed k. We also prove that, as k → ∞, d has to increase only very modestly to maintain a fixed error bound (d ∼ k 1/9 is a typical behaviour). Numerical experiments show that the method suffers minimal loss of accuracy as k → ∞, for a fixed number of degrees
In this paper we examine spatio-temporal pattern formation in reaction-diffusion systems on the surface of the unit sphere in 3D. We first generalise the usual linear stability analysis for a two-chemical system to this geometrical context. Noting the limitations of this approach (in terms of rigorous prediction of spatially heterogeneous steady-states) leads us to develop, as an alternative, a novel numerical method which can be applied to systems of any dimension with any reaction kinetics. This numerical method is based on the method of lines with spherical harmonics and uses fast Fourier transforms to expedite the computation of the reaction kinetics. Numerical experiments show that this method efficiently computes the evolution of spatial patterns and yields numerical results which coincide with those predicted by linear stability analysis when the latter is known. Using these tools, we then investigate the rĵle that pre-pattern (Turing) theory may play in the growth and development of solid tumours. The theoretical steady-state distributions of two chemicals (one a growth activating factor, the other a growth inhibitory factor) are compared with the experimentally and clinically observed spatial heterogeneity of cancer cells in small, solid spherical tumours such as multicell spheroids and carcinomas. Moreover, we suggest a number of chemicals which are known to be produced by tumour cells (autocrine growth factors), and are also known to interact with one another, as possible growth promoting and growth inhibiting factors respectively. In order to connect more concretely the numerical method to this application, we compute spatially heterogeneous patterns on the surface of a growing spherical tumour, modelled as a moving-boundary problem. The numerical results strongly support the theoretical expectations in this case. Finally in an appendix we give a brief analysis of the numerical method.
We consider additive Schwarz domain decomposition preconditioners for piecewise linear finite element approximations of elliptic PDEs with highly variable coefficients. In contrast to standard analyses, we do not assume that the coefficients can be resolved by a coarse mesh. This situation arises often in practice, for example in the computation of flows in heterogeneous porous media, in both the deterministic and (Monte-Carlo simulated) stochastic cases. We consider preconditioners which combine local solves on general overlapping subdomains together with a global solve on a general coarse space of functions on a coarse grid. We perform a new analysis of the preconditioned matrix, which shows rather explicitly how its condition number depends on the variable coefficient in the PDE as well as on the coarse mesh and overlap parameters. The classical estimates for this preconditioner with linear coarsening guarantee good conditioning only when the coefficient varies mildly inside the coarse grid elements. By contrast, our new results show that, with a good choice of subdomains and coarse space basis functions, the preconditioner can still be robust even for large coefficient variation inside domains, when the classical method fails to be robust. In particular our estimates prove very precisely the previously made empirical observation that the use of low-energy coarse spaces can lead to robust preconditioners. We go on to consider coarse spaces constructed from multiscale finite elements and prove that preconditioners using this type of coarsening lead to robust preconditioners for a variety of binary (i.e. two-scale) media model problems. Moreover numerical experiments show that the new preconditioner has greatly improved performance over standard preconditioners even in the random coefficient case. We show also how the analysis extends in a straightforward way to multiplicative versions of the Schwarz method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.