In this paper we examine spatio-temporal pattern formation in reaction-diffusion systems on the surface of the unit sphere in 3D. We first generalise the usual linear stability analysis for a two-chemical system to this geometrical context. Noting the limitations of this approach (in terms of rigorous prediction of spatially heterogeneous steady-states) leads us to develop, as an alternative, a novel numerical method which can be applied to systems of any dimension with any reaction kinetics. This numerical method is based on the method of lines with spherical harmonics and uses fast Fourier transforms to expedite the computation of the reaction kinetics. Numerical experiments show that this method efficiently computes the evolution of spatial patterns and yields numerical results which coincide with those predicted by linear stability analysis when the latter is known. Using these tools, we then investigate the r牡le that pre-pattern (Turing) theory may play in the growth and development of solid tumours. The theoretical steady-state distributions of two chemicals (one a growth activating factor, the other a growth inhibitory factor) are compared with the experimentally and clinically observed spatial heterogeneity of cancer cells in small, solid spherical tumours such as multicell spheroids and carcinomas. Moreover, we suggest a number of chemicals which are known to be produced by tumour cells (autocrine growth factors), and are also known to interact with one another, as possible growth promoting and growth inhibiting factors respectively. In order to connect more concretely the numerical method to this application, we compute spatially heterogeneous patterns on the surface of a growing spherical tumour, modelled as a moving-boundary problem. The numerical results strongly support the theoretical expectations in this case. Finally in an appendix we give a brief analysis of the numerical method.
In this work we develop, implement and analyze a high-order spectrally accurate algorithm for computation of the echo area, and monostatic and bistatic radar cross-section (RCS) of a three dimensional perfectly conducting obstacle through simulation of the time-harmonic electromagnetic waves scattered by the conductor. Our scheme is based on a modified boundary integral formulation (of the Maxwell equations) that is tolerant to basis functions that are not tangential on the conductor surface. We test our algorithm with extensive computational experiments using a variety of three dimensional perfect conductors described in spherical coordinates, including benchmark radar targets such as the metallic NASA almond and ogive. The monostatic RCS measurements for non-convex conductors require hundreds of incident waves (boundary conditions). We demonstrate that the monostatic RCS of small (to medium) sized conductors can be computed using over one thousand incident waves within a few minutes (to a few hours) of CPU time. We compare our results with those obtained using method of moments based industrial standard three dimensional electromagnetic codes CARLOS, CICERO, FE-IE, FERM, and FISC. Finally, we prove the spectrally accurate convergence of our algorithm for computing the surface current, far-field, and RCS values of a class of conductors described globally in spherical coordinates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.