The genus Flavivirus, family Flaviviridae, includes a number of important arthropod-transmitted human pathogens such as dengue viruses, West Nile virus, Japanese encephalitis virus and yellow fever virus. In addition, the genus includes flaviviruses without a known vertebrate reservoir, which have been detected only in insects, particularly in mosquitoes, such as cell fusing agent virus, Kamiti River virus, Culex flavivirus, Aedes flavivirus, Quang Binh virus, Nakiwogo virus and Calbertado virus. Reports of the detection of these viruses with no recognized pathogenic role in humans are increasing in mosquitoes collected around the world, particularly in those sampled in entomological surveys targeting pathogenic flaviviruses. The presence of six potential flaviviruses, detected from independent European arbovirus surveys undertaken in the Czech Republic, Italy,
Reciprocal hybridizations between Helicoverpa armigera (Hü bner) and Helicoverpa assulta (Guenée) were studied. The cross between females of H. armigera and males of H. assulta yielded only fertile males and sterile individuals lacking an aedeagus, valva or ostium bursae. A total of 492 larvae of the F 1 generation were obtained and 374 of these completed larval development and pupated. Only 203 pupae were morphologically normal males, the remaining 171 pupae were malformed. Larvae and pupae that gave rise to morphologically abnormal adults exhibited longer development times. Sterility was not only associated with malformed external sex organs, but also a range of abnormalities of the internal reproductive system: (i) loss of internal reproductive organs, (ii) with one to three copies of an undeveloped bursa copulatrix; or (iii) with one or two undeveloped testes. Normal male hybrid adults showed higher flight activity in comparison with males of both species. In contrast, the cross between females of H. assulta and males of H. armigera yielded morphologically normal offspring (80 males and 83 females). The interaction of the Z-chromosome from H. assulta with autosomes from H. armigera might result in morphological abnormalities found in hybrids and backcrosses, and maternal-zygotic incompatibilities might contribute to sex bias attributed to hybrid inviability.
Spruce budworm larvae (Choristoneura fumiferana) upon ingesting tebufenozide (RH-5992) stop feeding and go into a precocious, incomplete molt, leading eventually to death. Like 20-hydroxyecdysone (20E), tebufenozide also acts at the receptor level and transactivates the expression of up-regulated genes but, because of its persistence, the down-regulated genes that are normally expressed in the absence of 20E are not expressed. While tebufenozide is lepidopteran-specific, an analog, RH-5849, is effective on dipterans. This is reflected in the respective effects of the two compounds on Cf-203 (C. fumiferana--203), a lepidopteran cell line and Dm-2 (Drosophila melanogaster--2), a dipteran cell line. Cf-203 cells accumulated [14C]tebufenozide and expressed CHR3 (Choristoneura hormone receptor 3), but Dm-2 cells excluded the material and did not express DHR3 (Drosophila hormone receptor 3). Using yeast ABC (ATP binding cassette) transporter mutants, we determined that PDR5 (pleiotropic drug resistance 5) was responsible for the exclusion. We discovered recently that older instars of the white-marked tussock moth (Orgyia leucostigma) are resistant to tebufenozide, perhaps as a result of such an exclusion system. We are currently cloning PDR5 (pleiotropic drug resistance 5), which is an essential step in studying the resistance mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.