We describe the design and application of a new in-laboratory diffraction-enhanced x-ray imaging (DEXI) instrument that uses a nonsynchrotron, conventional x-ray source to image the internal structure of an object. In the work presented here, a human cadaveric thumb is used as a test-sample to demonstrate the imaging capability of our instrument. A 22 keV monochromatic x-ray beam is prepared using a mismatched, two-crystal monochromator; a silicon analyzer crystal is placed in a parallel crystal geometry with the monochromator allowing both diffraction-enhanced imaging and multiple-imaging radiography to be performed. The DEXI instrument was found to have an experimentally determined spatial resolution of 160+/-7 mum in the horizontal direction and 153+/-7 mum in the vertical direction. As applied to biomedical imaging, the DEXI instrument can detect soft tissues, such as tendons and other connective tissues, that are normally difficult or impossible to image via conventional x-ray techniques.
The loss of articular cartilage characteristic of osteoarthritis can only be diagnosed by joint space narrowing when conventional radiography is used. This is due to the lack of X-ray contrast of soft tissues. Whereas conventional radiography harnesses the X-ray attenuation properties of tissues, Diffraction Enhanced Imaging (DEI), a novel radiographic technique, allows the visualization of soft tissues simultaneous with calcified tissues by virtue of its ability to not only harness X-ray attenuation but also the X-ray refraction from tissue boundaries. Previously, DEI was dependent upon synchrotron X-rays, but more recently, the development of nonsynchrotron DEI units has been explored. These developments serve to elaborate the full potential of radiography. Here, we tested the potential of an in-laboratory DEI system, called Diffraction-Enhanced X-ray Imaging (DEXI), to render images of articular cartilage displaying varying degrees of degradation, ex vivo. DEXI allowed visualization of even early stages of cartilage degeneration such as surface fibrillation. This may be of eventual clinical significance for the diagnosis of early stages of degeneration, or at the very least, to visualize soft tissue degeneration simultaneous with bone changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.