Electron transfer is used as a probe for angstrom-scale structural changes in single protein molecules. In a flavin reductase, the fluorescence of flavin is quenched by a nearby tyrosine residue by means of photo-induced electron transfer. By probing the fluorescence lifetime of the single flavin on a photon-by-photon basis, we were able to observe the variation of flavin-tyrosine distance over time. We could then determine the potential of mean force between the flavin and the tyrosine, and a correlation analysis revealed conformational fluctuation at multiple time scales spanning from hundreds of microseconds to seconds. This phenomenon suggests the existence of multiple interconverting conformers related to the fluctuating catalytic reactivity.
Silicon single-photon avalanche diodes (SPADs) are nowadays a solid-state alternative to photomultiplier tubes (PMTs) in single-photon counting (SPC) and time-correlated single-photon counting (TCSPC) over the visible spectral range up to 1-mum wavelength. SPADs implemented in planar technology compatible with CMOS circuits offer typical advantages of microelectronic devices (small size, ruggedness, low voltage, low power, etc.). Furthermore, they have inherently higher photon detection efficiency, since they do not rely on electron emission in vacuum from a photocathode as do PMTs, but instead on the internal photoelectric effect. However, PMTs offer much wider sensitive area, which greatly simplifies the design of optical systems; they also attain remarkable performance at high counting rate, and offer picosecond timing resolution with microchannel plate models. In order to make SPAD detectors more competitive in a broader range of SPC and TCSPC applications, it is necessary to face several issues in the semiconductor device design and technology. Such issues will be discussed in the context of the two possible approaches to such a challenge: employing a standard industrial high-voltage CMOS technology or developing a dedicated CMOS-compatible technology. Advances recently attained in the development of SPAD detectors will be outlined and discussed with reference to both single-element detectors and integrated detector arrays
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.