Heartworm disease caused by Dirofilaria immitis is a vector-borne disease that affects canids and felids, both domestic and wild, throughout the world. It is a chronic disease which causes vascular damage in pulmonary arteries, and in advanced stages, the presence of pulmonary hypertension and right-sided congestive heart failure can be evidenced. Moreover, pulmonary thromboembolism is caused by the death of the worms, which can be lethal for the infected animal. Furthermore, it is the causative agent of human pulmonary dirofilariosis, being a zoonotic disease. The aim of this review was to update the current epidemiological situation of heartworm in Europe in dogs, cats, wild animals, and vectors insects, and to analyse the factors that may have contributed to the continuous spread of the disease in the last decade (2012–2021). In Europe, the disease has extended to eastern countries, being currently endemic in countries where previously only isolated or imported cases were reported. Furthermore, its prevalence has continued to increase in southern countries, traditionally endemic. This distribution trends and changes are influenced by several factors which are discussed in this review, such as the climate changes, presence of vectors in new areas, the appearance of new competent vector species in the continent, increased movement of pets that travelled to or originated from endemic countries, the urbanisation of rural areas leading to the formation of so-called “heat islands”, or the creation of extensive areas of irrigated crops. The continuous expansion of D. immitis must be monitored, and measures adapted to the situation of each country must be carried out for adequate control.
Various factors are currently causing an increase in vector-borne parasitic diseases at a global scale; among them, some stand out, such as climatic disturbances derived from global change, the increase in movements of reservoir animals, or changes in land made by human activity. In the European continent, there have been an increasing number of epidemiological studies focused on the detection of these diseases, especially in dogs. In Spain, there are few epidemiological studies focused on the evaluation of the biotic and abiotic factors that may influence the distribution, such as climatic zones, orography, or presence of water reservoirs. The aim of this study was to analyze the prevalence and distribution of several canine vector-borne diseases caused by Dirofilaria immitis, Leishmania infantum, Anaplasma platys, and Ehrlichia canis in the autonomous community of Castilla y León, the largest region of the Iberian Peninsula, providing a geospatial approach based on a geographic information system (GIS) analysis. Blood from a total of 1,475 domestic dogs from the nine provinces of Castilla y León were analyzed. Also, a GIS analysis of the sample locations was carried out, taking into account the most important predictor variables. The prevalence in dogs infected by D. immitis was 7.19%, and the seroprevalence by L. infantum was 4.61 and 1.56% for A. platys and E. canis. Most of the infected animals were located in areas with stagnant water, irrigated agriculture, or riverbanks, always close to forest and woodland vegetation. These results indicate that dogs living in Castilla y León should take prophylactic measures to avoid infections.
The climate of Spain has favourable characteristics for the development of D. immitis in dogs, being an endemic country. Given that vector-borne diseases are spreading rapidly through Europe, due to factors such as climate change, the expansion of vectors and the increased mobility of reservoir animals, the aim was to update the epidemiology of heartworm in dogs and analyse the results based on climate and other epidemiological and geo-environmental factors. To this aim, 9543 blood samples from dogs from all provinces and autonomous cities of Spain were analysed for the detection of antigens of D. immitis, obtaining a prevalence of 6.47%. The northwestern and southern provinces showed the highest prevalences, as well as in the Balearic and Canary Islands. Prevalences were higher in dogs outdoors. Furthermore, most of the positive dogs were found in regions with high humidity and water availability. This study shows, for the first time, positive cases in provinces and islands where no cases had previously been described and demonstrates the continuous expansion and consolidation of heartworm in Spain. Considering its zoonotic character, the implementation of control and awareness programmes for the prevention of D. immitis in pets is necessary.
Dirofilariosis is a vector-borne zoonotic disease whose distribution is linked to the presence of culicid mosquitoes. Spain and Portugal are considered endemic countries; however, the distribution of dirofilariosis is not uniform. Our aim was to develop a more accurate risk model of dirofilariosis transmission for the Iberian Peninsula (Spain and Portugal) and the Balearic Islands (Spain). To do this, we used a set of key variables related to parasite transmission: the potential distribution of suitable habitats for Culex pipiens calculated via an ecological niche model (ENM) and the potential number of Dirofilaria spp. generations. The resulting model was validated with the prevalence and geolocation of D. immitis-infected dogs from all provinces and districts. In addition, the impact of possible future climatic conditions was estimated. A quantitative estimate of the risk of infection by Dirofilaria spp. was obtained at a resolution of 1 km2. The entire analyzed territory was susceptible to contact with the parasite. The highest risk of infection was found throughout the eastern coastal strip and the south of the Iberian Peninsula and the Balearic Islands, as well as in the areas surrounding the basins of the main rivers, and the lowest risk was located in the higher-altitude areas. We found a robust and positive relationship between the risk of dirofilariosis and the observed prevalence of infested dogs in the study area (β ± SE = 3.32 ± 1.43 p < 0.05). In 2080, the percentage of territory gain for Cx. pipiens will increase to 49.98%, which will increase the risk of infection. This new model provides a high predictive value for the current and predicted presence and risk and can serve as a tool for the management and control of dirofilariosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.