The Ilopango caldera is the source of the large Tierra Blanca Joven (TBJ) eruption that occurred about 1.5 ka years ago, between ca. AD270 and AD535. The eruption dispersed volcanic ash over much of the present territory of El Salvador, and pyroclastic density currents (PDCs) extended 40 km from the volcano. In this study, we document the physical characteristics of the deposits from all over El Salvador to further constrain the eruption processes and the intensity and magnitude of the different phases of the eruption. The succession of deposits generated by the TBJ eruption is made of 8 units. The eruption started with PDCs of hydromagmatic origin (Unit A 0 ), followed by fallout deposits (Units A and B) that are b15 cm thick and exposed in sections close to the Ilopango caldera (within 10-15 km). The eruption, then, transitioned into a regime that generated further PDCs (Units C-F), these range from dilute to dense and they filled the depressions near the Ilopango caldera with thicknesses up to 70 m. Deposits from the co-ignimbrite plume (Unit G) are the most widespread, the deposits are found in Guatemala, Honduras, Nicaragua, Costa Rica and the Pacific Ocean and cm-thick across El Salvador. Modelling of the deposits suggests that column heights were 29 km and 7 km for the first two fallout phases, and that the co-ignimbrite phoenix plume rose up to 49 km. Volumes estimated for the fallout units are 0.15, 0.8 and 16 km 3 dense rock equivalent (DRE) for Unit A, B and G respectively. The PDCs deposits volumes were estimated to be~0.5,~3.3,~0.3 and~9.1 km 3 DRE for Units C, D, E and F, respectively. The combined volume of TBJ deposits is 30 km 3 DRE (~58 km 3 bulk rock), indicating that it was one of largest Holocene eruptions from Central America. This eruption occurred while Mayan populations were living in the region and it would have had a significant impact on the areas within tens of kilometres of the vent for many years to decades after the eruption.
The Tierra Blanca Joven (TBJ) eruption from Ilopango volcano deposited thick ash over much of El Salvador when it was inhabited by the Maya, and rendered all areas within at least 80 km of the volcano uninhabitable for years to decades after the eruption. Nonetheless, the more widespread environmental and climatic impacts of this large eruption are not well known because the eruption magnitude and date are not well constrained. In this multifaceted study we have resolved the date of the eruption to 431 ± 2 CE by identifying the ash layer in a well-dated, high-resolution Greenland ice-core record that is >7,000 km from Ilopango; and calculated that between 37 and 82 km3 of magma was dispersed from an eruption coignimbrite column that rose to ∼45 km by modeling the deposit thickness using state-of-the-art tephra dispersal methods. Sulfate records from an array of ice cores suggest stratospheric injection of 14 ± 2 Tg S associated with the TBJ eruption, exceeding those of the historic eruption of Pinatubo in 1991. Based on these estimates it is likely that the TBJ eruption produced a cooling of around 0.5 °C for a few years after the eruption. The modeled dispersal and higher sulfate concentrations recorded in Antarctic ice cores imply that the cooling would have been more pronounced in the Southern Hemisphere. The new date confirms the eruption occurred within the Early Classic phase when Maya expanded across Central America.
The Temascalcingo volcano is a dacitic stratovolcano located at the eastern part of the Acambay graben, a tectonic basin in the central sector of the Trans-Mexican Volcanic Belt (TMVB), which is an active, mostly calc-alkaline volcanic arc that crosses Mexico from the Pacific Ocean to the Gulf of Mexico. This study characterises the explosive activity of the San Mateo Pumice eruption that is the most recent and largest paroxysmal episode of this volcano and the last unit of the Cerritos Member. Indeed, this eruption is associated with an undated debris avalanche event consisting of a major sector collapse developed on the western flank of the volcano. Stratigraphic data suggest a highly explosive eruption that generated a relatively thick (up to 10 m) and widespread pumice fallout deposit, trending to the NE, and an aerial distribution of at least 100 km 2. This subplinian type eruption of VEI 4 lasted about 9 h and produced a plume height up to 12 km above the vent (i.e.,~14 km above sea level). This type of explosive eruption is relatively common in the TMVB, so a comprehensive geological study, with the corresponding numerical simulations like the one that was carried out, contributes to the understanding of the explosive volcanism of modest size stratovolcanoes that are common in the TMVB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.