В первой части обзора дано современное изложение структуры кольца специальных унитарных бордизмов, включающее как классические геометрические методы Коннера-Флойда, Уолла и Стонга, так и технику спектральной последовательности Адамса-Новикова и формальных групп, в том числе результаты, полученные после фундаментальной работы С. П. Новикова 1967 г. Во второй части мы используем методы торической топологии для построения и описания геометрических представителей в классах $SU$-бордизма, включая торические и квазиторические многообразия, а также многообразия Калаби-Яу.
Библиография: 56 названий.
В настоящей работе построена прямая последовательность $P^{0}\subset P^{1}\subset\cdots$ простых многогранников таких, что для всех $2\leq k\leq n$ в кольцах когомологий их момент-угол многообразий $\mathcal Z_{P^n}$ существуют однозначно определенные нетривиальные $k$-местные произведения Масси. Доказано, что прямая последовательность многообразий $*\subset S^{3}\hookrightarrow…\hookrightarrow\mathcal Z_{P^n}\hookrightarrow\mathcal Z_{P^{n+1}}\hookrightarrow\cdots$ обладает следующими свойствами: каждое многообразие $\mathcal Z_{P^n}$ является ретрактом многообразия $\mathcal Z_{P^{n+1}}$, и в кольцах когомологий имеют место обратные последовательности (по $n$ и $k$, где $k\to\infty$ при $n\to\infty$) построенных произведений Масси.
В качестве приложения мы получаем, что в спектральной последовательности Эйленберга-Мура, связывающей кольца $H^*(\Omega X)$ и $H^*(X)$ с коэффициентами в поле, в случае $X=\mathcal Z_{P^n}$ существуют нетривиальные дифференциалы $d_k$ для сколь угодно больших $k$ при $n\to\infty$.
Библиография: 91 наименование.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.