X-ray
CT instruments are among the most available, efficient, and
cost-effective imaging modalities in hospitals. The field of CT molecular
imaging is emerging which relies mainly on the detection of gold nanoparticles
and iodine-containing compounds directed to tagging a variety of abundant
biomolecules. Here for the first time we attempted to detect enzymatic
activity, while the low sensitivity of CT scanners to contrast reagents
made this a challenging task. Therefore, we developed a new class
of nanosized cathepsin-targeted activity-based probes (ABPs) for functional
CT imaging of cancer. ABPs are small molecules designed to covalently
modify enzyme targets in an activity-dependent manner. Using a CT
instrument, these novel probes enable detection of the elevated cathepsin
activity within cancerous tissue, thus creating a direct link between
biological processes and imaging signals. We present the generation
and biochemical evaluation of a library of ABPs tagged with different
sized gold nanoparticles (GNPs), with various ratios of cathepsin-targeting
moiety and a combination of different polyethylene glycol (PEG) protective
layers. The most potent and stable GNP-ABPs were applied for noninvasive
cancer imaging in mice. Surprisingly, detection of CT contrast from
the tumor had reverse correlation to GNP size and the amount of targeting
moiety. Interestingly, TEM images of tumor sections show intercellular
lysosomal subcellular localization of the GNP-ABPs. In conclusion,
we demonstrate that the covalent linkage is key for detection using
low sensitive imaging modalities and the utility of GNP-ABPs as a
promising tool for enzymatic-based CT imaging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.