The sprawling nature of Internet of Things (IoT) sensors require the comprehensive management and reliability of the entire network. Modern Internet Protocol (IP) networks demand specific qualitative and quantitative parameters that need to be met. One of these requirements is the minimal packet loss in the network. After a node or link failure within the network, the process of network convergence will begin. This process may take an unpredictable time, mostly depending on the size and the structure of the affected network segment and the routing protocol used within the network. The categories of proposed solutions for these problems are known as Fast ReRoute (FRR) mechanisms. The majority of current Fast ReRoute mechanisms use precomputation of alternative backup paths in advance. This paper presents an Enhanced Multicast Repair (EM-REP) FRR mechanism that uses multicast technology to create an alternate backup path and does not require pre-calculation. This principle creates a unique reactive behavior in the Fast ReRoute area. The enhanced M-REP FRR mechanism can find an alternative path in the event of multiple links or nodes failing at different times and places in the network. This unique behavior can be applied in the IoT sensors area, especially in network architecture that guarantees reliability of data transfer.
Today’s IP networks are experiencing a high increase in used and connected Internet of Things (IoT) devices and related deployed critical services. This puts increased demands on the reliability of underlayer transport networks. Therefore, modern networks must meet specific qualitative and quantitative parameters to satisfy customer service demands in line with the most common requirements of network fault tolerance and minimal packet loss. After a router or link failure within the transport network, the network convergence process begins. This process can take an unpredictable amount of time, usually depending on the size, the design of the network and the routing protocol used. Several solutions have been developed to address these issues, where one of which is the group of so-called Fast ReRoute (FRR) mechanisms. A general feature of these mechanisms is the fact that the resilience to network connectivity failures is addressed by calculating a pre-prepared alternative path. The path serves as a backup in the event of a network failure. This paper presents a new Bit Repair (B-REP) FRR mechanism that uses a special BIER header field (Bit-String) to explicitly indicate an alternative path used to route the packet. B-REP calculates an alternative path in advance as a majority of existing FRR solutions. The advantage of B-REP is the ability to define an alternative hop-by-hop path with full repair coverage throughout the network, where, unlike other solutions, we propose the use of a standardized solution for this purpose. The area of the B-REP application is communication networks working on the principle of packet switching, which use some link-state routing protocol. Therefore, B-REP can be successfully used in the IoT solutions especially in the field of ensuring communication from sensors in order to guarantee a minimum packet loss during data transmission.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.