In the developed world, declining prevalence of some parasitic infections correlates with increased incidence of allergic and autoimmune disorders. Moreover, experimental human infection with some parasitic worms confers protection against inflammatory diseases in phase 2 clinical trials. Parasitic worms manipulate the immune system by secreting immunoregulatory molecules that offer promise as a novel therapeutic modality for inflammatory diseases. We identify a protein secreted by hookworms, anti-inflammatory protein-2 (AIP-2), that suppressed airway inflammation in a mouse model of asthma, reduced expression of costimulatory markers on human dendritic cells (DCs), and suppressed proliferation ex vivo of T cells from human subjects with house dust mite allergy. In mice, AIP-2 was primarily captured by mesenteric CD103 DCs and suppression of airway inflammation was dependent on both DCs and Foxp3 regulatory T cells (T) that originated in the mesenteric lymph nodes (MLNs) and accumulated in distant mucosal sites. Transplantation of MLNs from AIP-2-treated mice into naïve hosts revealed a lymphoid tissue conditioning that promoted T induction and long-term maintenance. Our findings indicate that recombinant AIP-2 could serve as a novel curative therapeutic for allergic asthma and potentially other inflammatory diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.