This work investigates the limit of Cd doping in ZnO derived by means of mechanochemical synthesis using CdCl2, ZnCl2 and Na2CO3 as precursors and NaCl as diluent. The prepared samples were characterized using X-ray diffraction (XRD), Fourier transformed infrared attenuated total reflectance (FTIR ATR) spectroscopy, UV-Vis diffuse reflectance spectroscopy (DRS),N2 adsorption-desorption isotherms, scanning electron microscope (SEM) and energy-dispersive X-ray spectroscopy (EDS), while photocatalytic efficiency has been evaluated for methylene blue degradation process. Zn for Cd replacement limits in the crystal lattice of ZnO derived via mechanochemical synthesis were found to be only 2%. For Cd present in a larger portion, CdO and CdCO3 phases appear. Cd doping limits in ZnO were not affected by the milling interval. However, it was observed that Cd doping impairs the nanocrystallinity of ZnO. The morphology and the electronic structure of ZnO and thus photocatalytic activity was inappreciably affected by the Cd doping.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.