A novel synthetic approach toward a poorly explored bioorganometallic consisting of ferrocene-1,1'-diamine bearing structurally and chirally diverse amino acid sequences is reported. Until now, ferrocene-1,1'-diamine was suitable for accommodating only identical amino acid sequences at its N-termini, leading to the symmetrically disubstituted homochiral products stabilized through a 14-membered intramolecular hydrogen-bonded ring as is seen in antiparallel β-sheet peptides. The key step of the novel synthetic pathway is the transformation of Ac-Ala-NH-Fn-COOH (5) (Fn = 1,1'-ferrocenylene) to orthogonally protected Ac-Ala-NH-Fn-NHBoc (7). The spectroscopic analysis (IR, NMR, CD) of the novel compounds, corroborated with DFT studies, suggests the interesting feature of the ferrocene-1,1'-diamine scaffold. The same hydrogen-bonding pattern, i.e. a 14-membered hydrogen-bonded ring, was determined both in solution and in the solid state, thus making them promising, yet simple scaffolds capable of mimicking β-sheet peptides. In vitro screening of potential anticancer activity in Hep G2 human liver carcinoma cells and Hs 578 T human breast cancer cells revealed a cytotoxic pattern for novel compounds (150-500 μM) with significantly decreased cell proliferation.
The aim of this study was to compare ochratoxin A (OTA) levels in pig tissues and biological fluids after animal exposure to contaminated diet (250 μg OTA/kg of feed) during 4 weeks of fattening. OTA concentrations were quantified using a validated immunoassay method (ELISA) and high-performance liquid chromatography with fluorescence detector (HPLC-FD). The highest mean OTA concentration in pig tissues was determined in kidneys of exposed animals (13.87 ± 1.41 μg/kg), followed by lungs (10.47 ± 1.97 μg/kg), liver (7.28 ± 1.75 μg/kg), spleen (4.81 ± 0.99 μg/kg), muscle tissue (4.72 ± 0.86 μg/kg), fat tissue (4.11 ± 0.88 μg/kg), heart (3.71 ± 1.09 μg/kg), and brain (3.01 ± 0.25 μg/kg). Furthermore, on the last day of exposure (day 28), significantly higher mean OTA levels were determined in urine (16.06 ± 3.09 μg/L) in comparison to serum (4.77 ± 1.57 μg/L) showing that OTA urine analysis could be a good marker to identify elevated levels of this contaminant in porcine tissues used for human consumption. This study gave guidelines for the most efficient OTA control in pig-derived biological materials that can be exercised at slaughterhouses.
Documented cases of mycotoxin occurrence in meat products call for further research into potential contamination sources, especially given an ever more increasing consumption of these nutritionally rich products. These foodstuffs can be contaminated with mycotoxins through three pathways: contaminated spices and other raw materials, mycotoxin-producing moulds present on the surface of dry-cured meat products, and carry-over effect from farm animals exposed to contaminated feed. In order to establish meat products’ mycotoxin contamination more precisely, the concentrations of all mycotoxins of relevance for these products should be determined. This manuscript reviews data on major mycotoxins present in different types of meat products, and discusses the contamination pathways, contamination levels and control & preventative measures.
The aim of this study was to determine the toxic effect of atrazine at the ovarian cellular level. Chinese Hamster Ovary (CHO-K1) cell line was used to evaluate the degree of in vitro atrazine cytotoxicity and the morphological changes were followed during the cell death. Application of four bioassays confirmed that atrazine decreases ovarian cell proliferation and IC(50) were determined with each assay after 72 h of exposure. The level of apoptosis in atrazine treated cells was low.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.