The aim of this study was to design a nanocarrier system for inhalation delivery of rifampicin (RIF) in combination with ascorbic acid (ASC), namely constituted of sodium alginate coated with chitosan and Tween 80 (RIF/ASC NPs) as a platform for the treatment of pulmonary tuberculosis infection. A Box-Behnken experimental design and response surface methodology (RSM) were applied to elucidate and evaluate the effects of several factors on the nanoparticle properties. On the other hand, it was found that RIF/ASC NPs were less cytotoxic than the free RIF, showing a significantly improved activity against nine clinical strains of Mycobacterium tuberculosis (M. tb) in comparison with the free drug. RIF/ ASC NPs had an average particle size of 324.0 ± 40.7 nm, a polydispersity index of 0.226 ± 0.030, and a zeta potential of − 28.52 ± 0.47 mV and the surface was hydrophilic. The addition of sucrose (1% w/v) to the nanosuspension resulted in the formation of a solid pellet easily redispersible after lyophilization. RIF/ASC NPs were found to be stable at different physiological pH values. In summary, findings of this work highlight the potential of the RIF/ASC NP-based formulation development herein to deliver RIF in combination with ASC through pulmonary route by exploring a non-invasive route of administration of this antibiotic, increasing the local drug concentrations in lung tissues, the primary infection site, as well as reducing the risk of systemic toxicity and hence improving the patient compliance.
Carbamazepine (CBZ) was incorporated into layered double hydroxides (LDH) to be used as a controlled drug system in solid tumors. CBZ has a formal charge of zero, so its incorporation in the anionic clay implies a challenge. Aiming to overcome this problem, CBZ was loaded into LDH with sodium cholate (SC), a surfactant with negative charge and, for comparison, without SC by the reconstruction method. Surprisingly, it was found that both resultant nanocomposites had similar CBZ encapsulation efficiency, around 75%, and the LDH-CBZ system without SC showed a better performance in relation to the release kinetics of CBZ in simulated body fluid (pH 7.4) and acetate buffer simulating the cellular cytoplasm (pH 4.8) than the system with SC. The CBZ dimensions were measured with Chem3D and, according to the basal spacing obtained from X-ray patterns, it can be arranged in the LDH-CBZ system as a monolayer with the long axis parallel to the LDH layers. Fourier transform infrared spectroscopy and solid state NMR measurements confirmed the presence of the drug, and thermogravimetric analyses showed an enhanced thermal stability for CBZ. These results have interesting implications since they increase the spectrum of LDH application as a controlled drug system to a large number of nonionic drugs, without the addition of other components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.