Abstract. Microcrystalline opal-CT and opal-C were investigated by 298i MAS NMR and 298i {1H} cross polarisation MAS NMR spectroscopy, X-ray small angle scattering, X-ray powder diffraction and infrared absorption spectroscopy. The results are compared with those for non-crystalline precious opal (opal-AG), non-crystalline hyalite (opal-AN), moderately disordered cristobalite and with well ordered low-cristobalite and low-tridymite.Opal-C is confirmed to be strongly stacking disordered low-cristobalite with about 20 to 30% probability for tridymitic stacking. More extensively stacking disordered opal-CT does not contain detectable domains of low-cristobalite or low-tridymite. The stacking sequence is close to 50% cristobalite and 50% tridymitic. The local order decreases with increasing stacking disorder, so that the structural state of microcrystalline opals lies between cristobalite, tridymite and non-crystalline opals.
The structure of the (1,3-butadiene)M(R2PC2H4PR2) compounds (M = Ni, Pd, Pt; R = Pri, Bu′, Cy) in the solid-state have been investigated by 13C and 31P CP/MAS NMR spectroscopy. The bonding mode adopted by the diene is dependent upon the nature of the metal: the palladium compounds contain an η2-diene molecule, the nickel compound where R is cyclohexyl contains an η4-diene molecule whereas the Pr2iPC2H4PPr2i-stabilized platinum compound con- tains a platinacyclopentene ring. The crystal structures of (η2-1,3-C4H6)Pd(Cy2PC2H4PCy2) and (η4-1,3-C4H6)Ni(Cy2PC2H4PCy2) have been confirmed by X-ray diffraction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.