The population cycles of rodents at northern latitudes have puzzled people for centuries, and their impact is manifest throughout the alpine ecosystem. Climate change is known to be able to drive animal population dynamics between stable and cyclic phases, and has been suggested to cause the recent changes in cyclic dynamics of rodents and their predators. But although predator-rodent interactions are commonly argued to be the cause of the Fennoscandian rodent cycles, the role of the environment in the modulation of such dynamics is often poorly understood in natural systems. Hence, quantitative links between climate-driven processes and rodent dynamics have so far been lacking. Here we show that winter weather and snow conditions, together with density dependence in the net population growth rate, account for the observed population dynamics of the rodent community dominated by lemmings (Lemmus lemmus) in an alpine Norwegian core habitat between 1970 and 1997, and predict the observed absence of rodent peak years after 1994. These local rodent dynamics are coherent with alpine bird dynamics both locally and over all of southern Norway, consistent with the influence of large-scale fluctuations in winter conditions. The relationship between commonly available meteorological data and snow conditions indicates that changes in temperature and humidity, and thus conditions in the subnivean space, seem to markedly affect the dynamics of alpine rodents and their linked groups. The pattern of less regular rodent peaks, and corresponding changes in the overall dynamics of the alpine ecosystem, thus seems likely to prevail over a growing area under projected climate change.
Ecological theory related to animal distribution and abundance is at present incomplete and to some extent naive. We suggest that this may partly be due to a long tradition in the field of model development for choosing mathematical and statistical tools for convenience rather than applicability. Real population dynamics are influenced by nonlinear interactions, nonequilibrium conditions, and scaling complexity from system openness. Thus, a coherent theory for individual-, population-, and community-level processes should rest on mathematical and statistical methods that explicitly confront these issues in a manner that satisfies principles from statistical mechanics for complex systems. Instead, ecological theory is traditionally based on premises from simpler statistical mechanical theory for memory-free, scale-specific, random-walk, and diffusion processes, while animals from many taxa generally express strategic homing, site fidelity, and conspecific attraction in direct violation of primary model assumptions. Thus, the main challenge is to generalize the theory for memory-free physical, many-body systems to include a more realistic memory-influenced framework that better satisfies ecological realism. We describe, simulate, and discuss three testable aspects of a model for multiscaled habitat use at the individual level: (1) scale-free distribution of movement steps under influence of self-reinforcing site fidelity, (2) fractal spatial dispersion of intra-home range relocations, and (3) nonasymptotic expansion of observed intra-home range patch use with increasing set of relocations. Examples of literature data apparently supporting the conjecture that multiscaled, strategic space use is widespread among many animal taxa are also described. We suggest that the present approach, which provides a protocol to test for influence from scale-free, memory-dependent habitat use at the individual level, may also point toward a guideline for development of a generalized theoretical framework for complex population kinetics and spatiotemporal population dynamics.
The seasonal composition of and the annual variation in the diet of the brown bear Ursus arctos in the Pasvik Valley, northeastern Norway, were estimated based on the analysis of 137 bear scats. The importance of moose Alces alces and reindeer Rangifer tarandus in the diet was given special attention, because results from Russia suggest that brown bears are generally more carnivorous in the north. Ungulates, especially adult moose, comprised the most important food item for bears in the Pasvik Valley during spring and summer, contributing 85 and 70% of the Estimated Dietary Energy Content (EDEC), respectively. During autumn, when the bears have to build up fat reserves and increase lean body mass for hibernation, berries were the most important food item, contributing 49% of the EDEC, but ungulates were still important, contributing 30% of the EDEC. Insects and vegetation were of low importance in all seasons. The proportion of ungulates in the diet of brown bears in the Pasvik Valley was considerably higher than farther south in Scandinavia, and this regional difference is important concerning bear and moose management in northern areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.