This paper presents the analysis of a Rankine cycle unit applied to improve overall efficiency of a hybrid electric vehicle (HEV). Exhaust waste heat is recovered from the internal combustion engine (ICE) and is converted into electrical power that is fed into the electrical system on board. The discontinuously available exhaust waste heat from the ICE operating cycle is stored as sensible heat in a pressurized working fluid applying the principle of a Ruths storage tank. Thus, it can provide almost constant mass flows to the expansion device during discharge in contrast to the standard Rankine cycle. It is also shown that the outlined system configuration leads to faster engine warm up resulting in optimum ICE operating conditions improving fuel economy. The benefits of a mild HEV versus conventional car powertrain are outlined step by step in a vehicle simulation. Additionally, improvement in fuel economy achieved by applying an additional Rankine cycle is demonstrated in the New European Driving Cycle (NEDC).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.