Along with industrialization and rapid urbanization, environmental remediation is globally a perpetual concept to deliver a sustainable environment. Various organic and inorganic wastes from industries and domestic homes are released into water systems. These wastes carry contaminants with detrimental effects on the environment. Consequently, there is an urgent need for an appropriate wastewater treatment technology for the effective decontamination of our water systems. One promising approach is employing nanoparticles of metal oxides as photocatalysts for the degradation of these water pollutants. Transition metal oxides and their composites exhibit excellent photocatalytic activities and along show favorable characteristics like non-toxicity and stability that also make them useful in a wide range of applications. This study discusses some characteristics of metal oxides and briefly outlined their various applications. It focuses on the metal oxides TiO2, ZnO, WO3, CuO, and Cu2O, which are the most common and recognized to be cost-effective, stable, efficient, and most of all, environmentally friendly for a sustainable approach for environmental remediation. Meanwhile, this study highlights the photocatalytic activities of these metal oxides, recent developments, challenges, and modifications made on these metal oxides to overcome their limitations and maximize their performance in the photodegradation of pollutants.
Among the most notable nanotechnology applications is its employment in environmental remediation and biomedical applications. Nonetheless, there is a need for cleaner and sustainable methods in preparing nanomaterials that use cheaper, more environment-friendly precursors than the conventional synthesis process. The green chemistry approach for the preparation of nanoparticles is becoming more attractive as it uses non-toxic chemicals and reagents. It also offers cost-effective synthesis process as it uses readily available plant sources and microbe as redox mediators in converting metallic cations to metal or metal oxide nanoparticles. The extracts of these plants and microbe sources contain phytochemicals and metabolites in variable quantities, which serve as redox mediators and capping agents that stabilize the biosynthesized nanoparticles. The present article reviews the recent studies on the fabrication of silver oxide nanoparticles (Ag2O-NPs) via plant-mediated and microbe-mediated green synthesis, giving a concise discussion on the green preparation of Ag2O-NPs employing extracts of different plants and microbial sources. The performances of the biosynthesized Ag2O-NPs are also reviewed, highlighting their potential use in photocatalysis and biomedical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.