Along with industrialization and rapid urbanization, environmental remediation is globally a perpetual concept to deliver a sustainable environment. Various organic and inorganic wastes from industries and domestic homes are released into water systems. These wastes carry contaminants with detrimental effects on the environment. Consequently, there is an urgent need for an appropriate wastewater treatment technology for the effective decontamination of our water systems. One promising approach is employing nanoparticles of metal oxides as photocatalysts for the degradation of these water pollutants. Transition metal oxides and their composites exhibit excellent photocatalytic activities and along show favorable characteristics like non-toxicity and stability that also make them useful in a wide range of applications. This study discusses some characteristics of metal oxides and briefly outlined their various applications. It focuses on the metal oxides TiO2, ZnO, WO3, CuO, and Cu2O, which are the most common and recognized to be cost-effective, stable, efficient, and most of all, environmentally friendly for a sustainable approach for environmental remediation. Meanwhile, this study highlights the photocatalytic activities of these metal oxides, recent developments, challenges, and modifications made on these metal oxides to overcome their limitations and maximize their performance in the photodegradation of pollutants.
One of the most significant aspects in the development of dye-sensitized solar cells is the exploration and design of high-efficiency and low-cost dyes. This paper reports the theoretical design of various triphenylamine analogues, wherein the central nitrogen moiety establishes an sp(2)-hybridization, which endows a significant participation in the charge-transfer properties. Density functional theory (DFT) and time-dependent DFT methodologies were utilized to investigate the geometry, electronic structure, photochemical properties, and electrochemical properties of these dyes. Different exchange-correlation functionals were initially evaluated to establish a proper methodology for calculating the excited-state energy of the reference dye, known as DIA3. Consequently, TD-LC-ωPBE with a damping parameter of 0.175 Bohr(-1) best correlates with the experimental value. Four new dyes, namely, Dhk1, Dhk2, Dhk3, and Dhk4, were designed by modifying the rigidity of the donor moiety. According to the results, altering the type and position of binding in the donor group leads to distinct planarity of the dyes, which significantly affects their properties. The designed Dhk4 dye showed more red-shifted and broadened absorption spectra owing to the enhanced coplanarity between its donor and π-bridge moiety, which brings an advantage for its potential use as sensitizer for photovoltaic applications.
Among the most notable nanotechnology applications is its employment in environmental remediation and biomedical applications. Nonetheless, there is a need for cleaner and sustainable methods in preparing nanomaterials that use cheaper, more environment-friendly precursors than the conventional synthesis process. The green chemistry approach for the preparation of nanoparticles is becoming more attractive as it uses non-toxic chemicals and reagents. It also offers cost-effective synthesis process as it uses readily available plant sources and microbe as redox mediators in converting metallic cations to metal or metal oxide nanoparticles. The extracts of these plants and microbe sources contain phytochemicals and metabolites in variable quantities, which serve as redox mediators and capping agents that stabilize the biosynthesized nanoparticles. The present article reviews the recent studies on the fabrication of silver oxide nanoparticles (Ag2O-NPs) via plant-mediated and microbe-mediated green synthesis, giving a concise discussion on the green preparation of Ag2O-NPs employing extracts of different plants and microbial sources. The performances of the biosynthesized Ag2O-NPs are also reviewed, highlighting their potential use in photocatalysis and biomedical applications.
This paper reports new D-D-π-A dyes based on N-annulated perylene, emphasizing the enhanced dye-to-semiconductor charge-transfer mechanism. A series of DFT calculations for new tPA-perylene-based dyes was conducted, starting from the systematic selection of DFT methods by reproducing the experimentally obtained properties of known perylene-based sensitizers. Accordingly, using the LC-ωPBE xc functional with 6-31+G(d) basis set for the time-dependent calculations of the excitation energies, a damping parameter of ω = 0.150 Bohr was found to be most appropriate for dyes having spatial orbital overlap value of 0.21 ≤ Λ ≤ 0.38, while ω = 0.175 Bohr is suitable for analogues with 0.43 ≤ Λ ≤ 0.57. Moreover, the mPWHandHPW91/6-31G(d) method gave high accuracy in GSOP calculations. The comparison between the properties of tPA-based donor groups has revealed that the semirigid tPA-based D4 unit is an effective donor group for perylene-based dye. Initial screening of the acceptor designs resulted in PLz4 dye with promising charge-transfer mechanism and highly favorable dye-TiO interaction based on the calculated dipole moment of the dye and dye-TiO complex. The attachment of the substituted-hydroacridine donor unit (D4) to PLz4 afforded a bathochromically shifted absorbance and improved molar absorptivity signifying its effective electron-donating ability. Among the D-D-π-A dyes, DP46 is expected to render a relatively high V and J supported by the calculated optical properties, oxidation potentials, ionization potential, and electron affinity values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.