As an obligatory application during the COVID-19 pandemic by Indonesians, PeduliLindungi must have provided outstanding quality services to its users. However, as of December 2021, users’ sentiment toward the quality and service of the PeduliLindungi application was still low, with an application rating of 3.6 out of 5 on the Google Play Store. This study uses text mining techniques for the Aspect-Based Sentiment Analysis (ABSA) task in the PeduliLindungi application review, a sentiment analysis task based on the aspect category of the application. This study aims to classify the users’ sentiment on aspects of the application and provide insight and knowledge to improve the quality of the PeduliLindungi application. The ABSA method used in this study is the classification of aspects and sentiments using the Convolutional Neural Network (CNN) algorithm. The results showed that the CNN model could produce such good performance with an f1 score of 92.23% in the aspect classification and 95.13% in the sentiment classification. The results of user sentiment modelling showed the dominance of negative sentiment in the eight aspects of the application, namely Visual Experience, Scan – Check-in/Out, Vaccine Certificate, eHac, COVID Test, Register/Login, Performance and Stability, and Privacy, Data, and Security. Index Terms—Aspect-Based Sentiment Analysis, Convolution Neural Network, PeduliLindungi, Text Classification, Text Mining.
Labuan Bajo merupakan tujuan utama wisata yang terkenal, menarik banyak wisatawan asing dan lokal yang dengan antusias membagikan pengalaman mereka melalui foto dan video di Instagram. Penelitian ini bertujuan untuk mengeksplorasi umpan balik dari wisatawan lokal dan asing yang telah mengunjungi Labuan Bajo, serta mengidentifikasi tujuan wisata paling populer di daerah tersebut. Data penelitian dikumpulkan dari Instagram dengan menggunakan tagar "labuanbajo". Metode analisis sentimen berbasis leksikon VADER digunakan untuk mengukur polaritas sentimen. Temuan eksperimental menunjukkan tingkat akurasi yang impresif, yaitu 72%, dengan metode sentimen leksikon VADER. Hasil penelitian mengungkapkan bahwa tujuan wisata Labuan Bajo cenderung membangkitkan sentimen positif, dengan 58,55% dari 3.351 data yang dikumpulkan dikategorikan sebagai positif, mencapai total 1.962 kali. Destinasi populer yang sering dikunjungi wisatawan antara lain Pulau Komodo, Pulau Padar, Pink Beach, Pulau Kelor, Pulau Rinca, Pulau Kanawa, dan Desa Waerebo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.