The pore-forming toxin streptolysin O (SLO) can be used to reversibly permeabilize adherent and nonadherent cells, allowing delivery of molecules with up to 100 kDa mass to the cytosol. Using FITC-labeled albumin, 10 5 -10 6 molecules were estimated to be entrapped per cell. Repair of toxin lesions depended on Ca 2؉ -calmodulin and on intact microtubules, but was not sensitive to actin disruption or to inhibition of protein synthesis. Resealed cells were viable for days and retained the capacity to endocytose and to proliferate. The active domains of large clostridial toxins were introduced into three different cell lines. The domains were derived from Clostridium difficile B-toxin and Clostridium sordelli lethal toxin, which glycosylate small G-proteins, and from Clostridium botulinum C2 toxin, which ADP-ribosylates actin. After delivery with SLO, all three toxins disrupted the actin cytoskeleton to cause rounding up of the cells. Glucosylation assays demonstrated that G-proteins Rho and Ras were retained in the permeabilized cells and were modified by the respective toxins. Inactivation of these G-proteins resulted in reduced stimulus-dependent granule secretion, whereas ADP-ribosylation of actin by the C. botulinum C2-toxin resulted in enhanced secretion in cells. The presented method for introducing proteins into living cells should find multifaceted application in cell biology.protein delivery ͉ pore-forming toxin
Agents that deplete cells of K+ without grossly disrupting the plasma membrane were found to stimulate the cleavage of pro‐interleukin (IL)‐1 beta to mature IL‐1 beta. Agents examined in this study included staphylococcal alpha‐toxin and gramicidin, both of which selectively permeabilize plasma membranes for monovalent ions, the ionophores nigericin and valinomycin, and the Na+/K+ ATPase inhibitor ouabain. K+ depletion by brief hypotonic shock also triggered processing of pro‐IL‐1 beta. The central role of K+ depletion for inducing IL‐1 beta maturation was demonstrated in cells permeabilized with alpha‐toxin: processing of pro‐IL‐1 beta was totally blocked when cells were suspended in medium that contained high K+, but could be induced by replacing extracellular K+ with Na+, choline+ or sucrose. To test whether K+ flux might also be important in physiological situations, monocytes were stimulated with lipopolysaccharide (LPS) for 1‐2 h to trigger pro‐IL‐1 beta synthesis, and transferred to K(+)‐rich medium. This maneuver totally suppressed IL‐1 beta maturation. Even after 16 h, however, removal of K+ from the medium resulted in rapid processing and export of IL‐1 beta. Ongoing export of mature IL‐1 beta from cells stimulated with LPS for 2‐6 h could also be arrested by transfer to K(+)‐rich medium. Moreover, a combination of two K+ channel blockers inhibited processing of IL‐1 beta in LPS‐stimulated monocytes. We hypothesize that K+ movement and local K+ concentrations directly or indirectly influence the action of interleukin‐1 beta‐converting enzyme (ICE) and, possibly, of related intracellular proteases.
Staphylococcal alpha-toxin, streptolysin-O, and Escherichia coli hemolysin are well-studied prototypes of pore-forming bacterial cytotoxins. Each is produced as a water-soluble single-chain polypeptide that inserts into target membranes to form aqueous transmembrane pores. This review will compare properties of the three toxin prototypes, highlighting the similarities and also the differences in their structure, mode of binding, mechanism of pore formation, and the responses they elicit in target cells. Pore-forming toxins represent the most potent and versatile weapons with which invading microbes damage the host macroorganism.
Depending on the size of the pores one wishes to produce in plasma membranes, the choice will probably fall on one of the three toxins discussed above. S. aureus alpha-toxin should be tried first when pores of 1-1.5 nm diameter are required. This is generally the case when Ca2+ and nucleotide dependence of a given process is being studied. If alpha-toxin does not work, this is probably due to the fact that the toxin either does not produce pores, or that the pores are too small. In this case, high concentrations of alpha-toxin should be tried. If this still does not work, we recommend the use of HlyA. When very large pores are to be created, e.g. for introduction of antibodies into the cells, SLO or another member of this toxin family are the agents of choice. SLO preparations need to be checked for presence of protease contaminants. Tetanolysin currently offers advantages since it is protease-free, and the size of the pores can probably be controlled by varying the toxin dose. Methods for assessing the size of pores created by such agents have been published in the recent literature, and the appropriate papers can be consulted whenever the need arises.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.