Complement activation mediated by NS1 leads to local and systemic generation of anaphylatoxins and SC5b-9, which may contribute to the pathogenesis of the vascular leakage that occurs in patients with DHF/DSS.
gene (120a). Both coagulase-positive and coagulase-negative staphylococci may produce other hemolysins, designated beta-, gamma-, and delta-toxins, that are molecularly distinct from alpha-toxin and whose roles as virulence factors 733
The pore-forming toxin streptolysin O (SLO) can be used to reversibly permeabilize adherent and nonadherent cells, allowing delivery of molecules with up to 100 kDa mass to the cytosol. Using FITC-labeled albumin, 10 5 -10 6 molecules were estimated to be entrapped per cell. Repair of toxin lesions depended on Ca 2؉ -calmodulin and on intact microtubules, but was not sensitive to actin disruption or to inhibition of protein synthesis. Resealed cells were viable for days and retained the capacity to endocytose and to proliferate. The active domains of large clostridial toxins were introduced into three different cell lines. The domains were derived from Clostridium difficile B-toxin and Clostridium sordelli lethal toxin, which glycosylate small G-proteins, and from Clostridium botulinum C2 toxin, which ADP-ribosylates actin. After delivery with SLO, all three toxins disrupted the actin cytoskeleton to cause rounding up of the cells. Glucosylation assays demonstrated that G-proteins Rho and Ras were retained in the permeabilized cells and were modified by the respective toxins. Inactivation of these G-proteins resulted in reduced stimulus-dependent granule secretion, whereas ADP-ribosylation of actin by the C. botulinum C2-toxin resulted in enhanced secretion in cells. The presented method for introducing proteins into living cells should find multifaceted application in cell biology.protein delivery ͉ pore-forming toxin
Streptolysin-O (SLO) is a thiol-activated, membrane-damaging protein toxin of Mr 69,000 that is produced by most strains of I-hemolytic group A streptococci. Native, primarily water-soluble toxin molecules bind to cholesterol-containing target membranes to assemble into supramolecular curved rod structures (25 to 100 nm long by ca. 7.5 nm wide), forming rings and arcs that penetrate into the apolar domain of the bilayer. Electron microscopic analyses of toxin polymers in their native and reconstituted membrane-bound form indicate that the convex surface of the rod structures is a hydrophobic, lipid-binding domain, whereas the concave surfaces appear to be hydrophilic. The embedment of the rings and arcs generates large transmembrane slits or pores of up to 30-nm diameter that can be directly visualized by negative staining and freeze-fracture electron microscopy. SLO oligomers were isolated in extensively delipidated form in detergent solution, and cholesterol was found not to detectably contribute to the observed rod structures. The rods are stable structures that resist prolonged exposure to trypsin and chymotrypsin. They can be reincorporated into cholesterol-free phosphatidylcholine liposomes to generate lesions identical to those observed on erythrocytes lysed by native SLO. Thus, although cholesterol plays a key role in the initial binding of SLO to the membrane, it does not directly participate in the formation of the membrane-penetrating toxin channels. Membrane damage by SLO is basically analogous to that mediated by previously studied channel formers, namely, the C5b-9 complement complex and staphylococcal ot-toxin. Lancefield group A P-hemolytic streptococci are the ma-* Corresponding author.
Rabbit or human erythrocytes lysed with Staphylococcus aureus a-toxin were solubilized with Triton X-100, and the toxin was subsequently isolated by gel chromatography, sucrose density gradient centrifugation, and reincorporation into liposomes. In the presence of Triton X-100, the toxin exhibited a sedimentation coefficient of 11S and eluted at a position between those of IgG and a2-macroglobulin in gel chromatography . A single polypeptide subunit of 34,000 mol wt was found in SDS PAGE . In the electron microscope, ring-shaped or cylindrical structures were observed, 8.5-10 nm in diameter, harboring central pits or channels 2-3 nm in diameter . An amphiphilic nature of these structures was evident from their capacity to bind lipid and detergent, aggregation in the absence of detergents, and low elutability from biological and artificial membranes through ionic manipulations. In contrast to the membranederived form of a-toxin, native toxin was a water-soluble, 34,000 mol wt, 3S molecule, devoid of an annular structure. Because studies on the release of radioactive markers from resealed erythrocyte ghosts indicated the presence of circumscribed lesions of -3-nm effective diameter in toxin-treated membranes, the possibility is raised that native a-toxin oligomerizes on and in the membrane to form an amphiphilic annular complex that, through its partial embedment within the lipid bilayer, generates a discrete transmembrane channel .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.