Food industry is one of the most important and fastest growing sectors of economy in Poland. This sector is also characterized by high demand for the resources, particularly for water. Polish food industrial plants consumed 793 hm 3 of water in 2014. Dairy branch had a combined 35% share of the above consumption. As shown by the data obtained from the Polish Central Statistical Office, the majority of dairy plants use its own source of water, so this branch is also important water producer in Poland. Water used for dairy industry should meet the requirements of at least drinking water quality, so the factories need to treat the water. This paper analyses the correlations between selected technical process, equipment profiles and water quality, and consumption in two types of dairy factories (DF). The first one DF-1 processes approx. 50,000 L of milk, and the second, DF-2 processes approx. 330,000 L of milk per day. The water taken from the wells needs to be pre-treated because of iron and manganese concentration and due to specific requirements in various industrial processes. As a result of this work, we have managed to propose technological solutions in the context of water consumption rationalization. The proposed solutions aim at improving water and wastewater management by reducing the amount of consumed water by industry.
The issue of sustainable management of biosolids (excess sludge) from wastewater treatment is an important issue in the entire developed world. Residual sludge disposal costs and environmental impact may be significant, and reducing such costs, as well as the energy consumption for dewatering and drying, is a key issue for safe and sustainable sludge disposal, considering the recent ban of some disposal options, such as landfilling, in many European countries. An alternative to thermal technologies is solar drying (not to be confused with bio-drying, very close to the concept of composting). Solar greenhouse drying technology is characterized by reduced land requirements compared with traditional outdoor drying beds, as well as by low-energy requirements compared with other thermal drying methods. Process operation is cost-efficient, with close to no maintenance, and observed specific evaporation rates up to threefold higher than conventional drying beds. Many applications of this technology exist in Poland, Germany and Austria: more than 10,000 t of wet sludge per year is treated in this way in Germany alone and almost as many (9000 t/year) in Poland. This paper examines current biosolids treatment technologies applicable to small wastewater treatment plants (2000-9999 population equivalents served) and opportunities for possible solids reuse in Poland in view of sustainable circular economy schemes. In particular, a purely solar-driven greenhouse facility for sewage sludge drying was investigated under different conditions (season, temperature, environmental humidity) and possible improvements for its efficiency evaluated. Sludge processed by solar drying could have different final disposal pathways, according to season, in accordance with the prescriptions of the new National Waste Management Plan of Poland.
The aim of this study was to determine the level of disinfection by-products in swimming pool waters in the Opole region. The authors paid special attention to determining the concentrations of trihalomethanes (THMs), which are formed in water during disinfection. Five indoor swimming pools were selected to provide a different range of basin capacity of pools, number of users, and treatment methods. In analyzed waters we found trihalomethane (THM) concentrations in a wide range at 27.6-278.6 μg/dm 3. The detected level of total THMs in 57% of samples didn't fulfill the new proposal of requirements for swimming pool water quality (100 μg/dm 3). The dominant compound of THMs was chloroform because of chlorine application in the disinfection method. All tested objects had to implement corrective action plans, the effect of which was to reach the limit of THM total concentration.
A prerequisite for achieving high energy efficiency of water supply systems (understood as using less energy to perform the same task) is the appropriate selection of all elements and their rational use. Energy consumption in water supply systems (WSS) is closely connected with water demand. Especially in the case of oversized water supply systems for which consumers’ water demand is at least 50% less than previously planned and flow velocity in some parts of the system is below 0.01 m·s−1, this problem of excessive energy consumption can be observed. In the literature, it is difficult to find descriptions and methods of energy management for such a case. The purpose of this study was both an evaluation of the current demand of an oversized WSS and a preliminary technical analysis of the possibility for energy saving. Solutions are presented that resulted in improvements in energy management, thus increasing energy efficiency. The conducted analyses indicate the wide use of numerical, hydraulic models, among others, for the needs of the sustainable oversize water supply systems management in order to improve energy efficiency. Those simulations only give energy consumption results as a first step in the process of decision-making for the modernization process, in which investment costs should be taken into account as a second step. Thus, this paper emphasizes the crucial role of hydraulic models as a good analytical tool used in decision support systems (DSS), especially for large, oversized water supply systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.