In order to achieve a sustainable degree of water resources usage, new paradigms in urbanized basins planning must be adopted. Worldwide urbanized areas total population has overcome in 2010, its rural counterpart. While urbanization can be a powerful driver of sustainable development, as the higher population density enables governments to more easily deliver essential infrastructure and services in urban areas at relatively low cost per capita, these benefits do not materialize automatically and inevitably. Water bodies are usually severely hit and impaired by poorly planned urbanization. Old water resources planning paradigms must be abandoned and new ones, which include the connection of ‘green cities’ and their infrastructure with new modes of drainage and landscape planning and improved consideration of receiving waters, ought to be adopted. These must not only be environmentally and ecologically sound, but also functionally and aesthetically attractive to the public. New eco-cities shall no longer rely on excessive water volumes withdrawn from often distant surface and groundwater sources, with a once-only use of the resource, and large water losses due to leaks and evapotranspiration. Long-distance transfer of wastewater and high energy usage and emissions for its treatment should be avoided by distributed and decentralized integrated water/wastewater management. Effluent-domination shall no longer be a characteristic of urbanized river basins. The paper examines some of the paradigms that have been proposed for improving integrated water resources management in urban basins and illustrates some recent examples whether already implemented or still at the proposal stage.
Food industry is one of the most important and fastest growing sectors of economy in Poland. This sector is also characterized by high demand for the resources, particularly for water. Polish food industrial plants consumed 793 hm 3 of water in 2014. Dairy branch had a combined 35% share of the above consumption. As shown by the data obtained from the Polish Central Statistical Office, the majority of dairy plants use its own source of water, so this branch is also important water producer in Poland. Water used for dairy industry should meet the requirements of at least drinking water quality, so the factories need to treat the water. This paper analyses the correlations between selected technical process, equipment profiles and water quality, and consumption in two types of dairy factories (DF). The first one DF-1 processes approx. 50,000 L of milk, and the second, DF-2 processes approx. 330,000 L of milk per day. The water taken from the wells needs to be pre-treated because of iron and manganese concentration and due to specific requirements in various industrial processes. As a result of this work, we have managed to propose technological solutions in the context of water consumption rationalization. The proposed solutions aim at improving water and wastewater management by reducing the amount of consumed water by industry.
The issue of sustainable management of biosolids (excess sludge) from wastewater treatment is an important issue in the entire developed world. Residual sludge disposal costs and environmental impact may be significant, and reducing such costs, as well as the energy consumption for dewatering and drying, is a key issue for safe and sustainable sludge disposal, considering the recent ban of some disposal options, such as landfilling, in many European countries. An alternative to thermal technologies is solar drying (not to be confused with bio-drying, very close to the concept of composting). Solar greenhouse drying technology is characterized by reduced land requirements compared with traditional outdoor drying beds, as well as by low-energy requirements compared with other thermal drying methods. Process operation is cost-efficient, with close to no maintenance, and observed specific evaporation rates up to threefold higher than conventional drying beds. Many applications of this technology exist in Poland, Germany and Austria: more than 10,000 t of wet sludge per year is treated in this way in Germany alone and almost as many (9000 t/year) in Poland. This paper examines current biosolids treatment technologies applicable to small wastewater treatment plants (2000-9999 population equivalents served) and opportunities for possible solids reuse in Poland in view of sustainable circular economy schemes. In particular, a purely solar-driven greenhouse facility for sewage sludge drying was investigated under different conditions (season, temperature, environmental humidity) and possible improvements for its efficiency evaluated. Sludge processed by solar drying could have different final disposal pathways, according to season, in accordance with the prescriptions of the new National Waste Management Plan of Poland.
The implementation of Water Framework Directive, speaking about the need to achieve good water status, and thus the corresponding sewage treatment caused the problem of waste water management has become a very important starting from the municipal level, through the national and the European ending. Sustainability, although not explicitly mentioned in the relevant EU or national legislation, it is key to implement wastewater systems. Their main objectives are to protect and promote human health by providing a clean environment, and breaking the cycle of disease. In this paper sustainability of wastewater collection and treatment options in the rural communities' in Poland, are discussed in the context of recent infrastructure investments. The paper presents an attempt to evaluate the implemented solutions for wastewater management in rural areas considering sustainable development criteria. Advantages and disadvantages of proposed system has been analysed with the focus to the question of selecting the right strategy that would fulfil both population and environmental needs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.