Activation of hepatic stellate cells from quiescence to myofibroblast-like cells (MFBs) is a pivotal event in hepatic fibrogenesis. Plastic-cultured stellate cells (an established in vitro model of the activated phenotype) recultured on Matrigel revert to quiescence. In the present study we analyzed the molecular mechanism underlying this process, focusing on the effect of collagen receptors alpha(2)beta(1) and alpha(1)beta(1) integrin signaling on the expression of Ets-1 transcription factor and its target gene MMP1 in cultured human MFBs. Cells grown in 3-dimensional (3D) substrates (Matrigel) or collagen type I gel) markedly upregulated Ets-1 and MMP1 messages, in comparison to cells cultured on plastic. A similar effect but less intense was mimicked by stimulation of alpha(2)beta(1) or blocking of alpha(1)beta(1) integrin in cells grown on plastic. We observed increased expression of MMP1 transcripts with parallel changes in MMP1 promoter activity, and in mRNA and protein levels of upstream transcription factors Ets-1 and c-Jun. Interference with alpha(2)beta(1) and alpha(1)beta(1) integrin function in cells cultured in a 3D collagen substrate resulted in an even greater effect. Morphologically, stimulation of alpha(2)beta(1) integrin resulted in formation of multicellular networks, probably by facilitation of cell migration. Thus, we report the novel observation that in cultured human MFBs reverting to quiescence, the expression of transcription factor Ets-1 and its downstream target MMP1 can be modulated by changes in the microenvironment, which are mediated, at least in part, by the balance between collagen receptor integrin alpha(2)beta(1) and alpha(1)beta(1) activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.