The potential of tabletops to enable simultaneous interaction and face-to-face collaboration can provide novel learning opportunities. Despite significant research in the area of collaborative learning around tabletops, little attention has been paid to the integration of multi-touch surfaces into classroom layouts and how to employ this technology to facilitate teacher-learner dialogue and teacher-led activities across multi-touch surfaces. While most existing techniques focus on the collaboration between learners, this work aims to gain a better understanding of practical challenges that need to be considered when integrating multi-touch surfaces into classrooms. It presents a multi-touch interaction technique, called TablePortal, which enables teachers to manage and monitor collaborative learning on students' tables. Early observations of using the proposed technique within a novel classroom consisting of networked multi-touch surfaces are discussed. The aim was to explore the extent to which our design choices facilitate teacher-learner dialogue and assist the management of classroom activity.
With the growing interest in supporting the Arabic language on the Semantic Web (SW), there is an emerging need to enable Arab users to query ontologies and RDF stores without being challenged with the formal logic of the SW. In the domain of English language, several efforts provided Natural Language (NL) interfaces to enable ordinary users to query ontologies using NL queries. However, none of these efforts were designed to support the Arabic language which has different morphological and semantic structures.As a step towards supporting Arabic Question Answering (QA) on the SW, this work presents AR2SPARQL, a NL interface that takes questions expressed in Arabic and returns answers drawn from an ontology-based knowledge base. The core of AR2SPARQL is the approach we propose to translate Arabic questions into triples which are matched against RDF data to retrieve an answer. The system uses both linguistic and semantic features to resolve ambiguity when matching words to the ontology content. To overcome the limited support for Arabic Natural Language Processing (NLP), the system does not make intensive use of sophisticated linguistic methods. Instead, it relies more on the knowledge defined in the ontology and the grammar rules we define to capture the structures of Arabic questions and to construct an adequate RDF representations. AR2SPARQL has been tested with two different datasets and results have shown that it achieves a good retrieval performance in terms of precision and recall.
The logic-based machine-understandable framework of the Semantic Web often challenges naive users when they try to query ontology-based knowledge bases. Existing research efforts have approached this problem by introducing Natural Language (NL) interfaces to ontologies. These NL interfaces have the ability to construct SPARQL queries based on NL user queries. However, most efforts were restricted to queries expressed in English, and they often benefited from the advancement of English NLP tools. However, little research has been done to support querying the Arabic content on the Semantic Web by using NL queries. This paper presents a domain-independent approach to translate Arabic NL queries to SPARQL by leveraging linguistic analysis. Based on a special consideration on Noun Phrases (NPs), our approach uses a language parser to extract NPs and the relations from Arabic parse trees and match them to the underlying ontology. It then utilizes knowledge in the ontology to group NPs into triple-based representations. A SPARQL query is finally generated by extracting targets and modifiers, and interpreting them into SPARQL. The interpretation of advanced semantic features including negation, conjunctive and disjunctive modifiers is also supported. The approach was evaluated by using two datasets consisting of OWL test data and queries, and the obtained results have confirmed its feasibility to translate Arabic NL queries to SPARQL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.