During the conversion of solar radiation into electricity, photovoltaic installations do not emit harmful compounds into the environment. However, the stage of production and post-use management of their elements requires large amounts of energy and materials. Therefore, this publication was intended to conduct an eco-energy life cycle analysis of photovoltaic power plant materials and components based on the LCA method. The subject of the study was a 1 MW photovoltaic power plant, located in Poland. Eco-indicator 99, CED and IPCC were used as calculation procedures. Among the analyzed elements of the power plant, the highest level of negative impact on the environment was characterized by the life cycle of photovoltaic panels stored at the landfill after exploitation (the highest demand for energy, materials and CO2 emissions). Among the materials of the power plant distinguished by the highest harmful effect on health and the quality of the environment stands out: silver, nickel, copper, PA6, lead and cadmium. The use of recycling processes would reduce the negative impact on the environment in the context of the entire life cycle, for most materials and elements. Based on the results obtained, guidelines were proposed for the pro-environmental post-use management of materials and elements of photovoltaic power plants.
In recent years, the offshore wind power industry has been growing dynamically. A key element which decides upon power output of a wind power plant is blades. They are most frequently produced from polymers – laminates with epoxy resins and fiberglass. In the near future, when the blade life cycles are over, large amounts of waste material of this type will have to be reused. This paper presents a comparison analysis of the impact of particular material existence cycle stages of land-based and offshore wind power plant blades on the environment. Two wind power plant blades, of about 49 m in length each, were examined using the LCA method, the programme SimaPro, and Ekowskaźnik 99 modelling (phase LCIA).
This study deals with the problems connected with the benefits and costs of an offshore wind power plant in terms of ecology. Development prospects of offshore and land-based wind energy production are described. Selected aspects involved in the design, construction, and operation of offshore wind power plant construction and operation are presented. The aim of this study was to analyze and compare the environmental impact of offshore and land-based wind power plants.Life cycle assessment analysis of 2-MW offshore and land wind power plants was made with the use of Eco-indicator 99 modeling. The results were compared in four areas of impact in order to obtain values of indexes for nonergonomic (impact on/by operator), nonfunctional (of/on the product), nonecological (on/by living objects), and nonsozological impacts (on/by manmade objects), reflecting the extent of threat to human health, the environment, and natural resources. The processes involved in extraction of fossil fuels were found to produce harmful emissions which in turn lead to respiratory system diseases being, thus, extremely dangerous for the natural environment. For all the studied areas, the impact on the environment was found to be higher for land-based wind power plants than for an offshore wind farm.A typical wind farm consists of nearly 8000 different elements, whereas, the most important ones are: rotor with blades, gondola, tower and a foundation. Figure 1 shows the technological environment of an offshore wind farm with the most commonly used types of foundations. Monopile is the most popular type of foundation (74% of European offshore installations) due to the low construction costs, simplicity, and the possibility of being used in shallow water (less than 20 m deep). The post is drilled or pounded into the sea bottom. In the beginning, a GBS (gravity-based structure) was used in shallow water (up to 15 m deep); currently it is being adjusted to bigger and bigger depths (nearly 30 m). A large area and the weight of the foundation protect the power plant from the forces of waves and wind. The foundation of bases of the tripod and triple type are fixed on three posts so that they can be used in deeper water. Three ends of the base are set or pounded into the sea bottom to support the central axis of the installation, connecting the axis with a turbine. Whereas the foundation of jacket type consists of a larger structure made of steel bars which are symmetrically sited beyond the main axis of the entire structure (efficiency of materials) [2,7,8].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.