In this paper we survey results and open problems on the structure of additive and hereditary properties of graphs. The important role of vertex partition problems, in particular the existence of uniquely partitionable graphs and reducible properties of graphs in this structure, is emphasized. Many related topics, including questions on the complexity of related problems, are investigated.
The distinguishing index $D^\prime(G)$ of a graph $G$ is the least cardinal $d$ such that $G$ has an edge colouring with $d$ colours that is only preserved by the trivial automorphism. This is similar to the notion of the distinguishing number $D(G)$ of a graph $G$, which is defined with respect to vertex colourings.We derive several bounds for infinite graphs, in particular, we prove the general bound $D^\prime(G)\leq\Delta(G)$ for an arbitrary infinite graph. Nonetheless, the distinguishing index is at most two for many countable graphs, also for the infinite random graph and for uncountable tree-like graphs.We also investigate the concept of the motion of edges and its relationship with the Infinite Motion Lemma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.