We report a direct observation of the intrinsic magnetization behavior of Au in thiol-capped gold nanoparticles with permanent magnetism at room temperature. Two element specific techniques have been used for this purpose: X-ray magnetic circular dichroism on the L edges of the Au and 197Au Mössbauer spectroscopy. Besides, we show that silver and copper nanoparticles synthesized by the same chemical procedure also present room-temperature permanent magnetism. The observed permanent magnetism at room temperature in Ag and Cu dodecanethiol-capped nanoparticles proves that the physical mechanisms associated to this magnetization process can be extended to more elements, opening the way to new and still not-discovered applications and to new possibilities to research basic questions of magnetism.
Different samples of the sodium-vanadium fluorophosphate cathodic materials have been synthesized via the hydrothermal method, varying the type and content of carbon used in the synthesis. Structural characterization of the composites was performed by powder X-ray diffraction. Magnetic susceptibility measurements and EPR (Electron Paramagnetic Resonance) polycrystalline spectra indicate that some of the samples exhibit V 3+ /V 4+ mixed valence, with the general formula Na 3 V 2 O 2x (PO 4 ) 2 F 3À2x where 0 # x < 1. The morphology of the materials was analyzed by Transmission Electron Microscopy (TEM). A correlation between the type and content of carbon with the electrochemical behavior of the different samples was established. Electrochemical measurements conducted using Swagelok-type cells showed two voltage plateaux at 3.6 and 4.1 V vs. Na/Na + . The best performing sample, which comprised a moderate percentage of electrochemical grade carbon as additive, exhibited specific capacity values of about 100 mA h g À1 at 1C (z80% of theoretical specific capacity). Cyclability tests at 1C proved good reversibility of the material that maintained 98% of initial specific capacity for 30 cycles.
Compounds with the general formula [MM‘(C3H2O4)2(H2O)4] (M = Ba, Sr; M‘ = Cu, Mn; C3H2O4 = malonate) have been synthesized and characterized. Single-crystal X-ray diffraction study on the [SrCu(C3H2O4)2(H2O)4] compound indicates that it crystallizes in the orthorhombic space group, Pccn, Z = 4, with unit cell parameters a = 6.719(2), b = 18.513(7), and c = 9.266(4) Å. The structure consists of distorted octahedral copper(II) species which are extended along the ac plane forming a two-dimensional structure. The geometry of the alkaline-earth ions resembles a distorted antiprism. The other compounds are isostructural. The EPR spectra of the [MCu(C3H2O4)2(H2O)4] (M = Ba, Sr) compounds show an orthorhombic g tensor as consequence of a linear combination of the axial symmetry and the exchange interactions between magnetically different centers, but crystallographically equivalent. For the manganese compounds, the EPR spectra of polycrystalline samples show that the intensity of the signal increases with decreasing temperature down to 20 K, and at lower temperatures the intensity decreases, becoming silent below 7 K. Magnetic measurements show two-dimensional (2D) ferromagnetic and antiferromagnetic interactions for the copper and manganese phases, respectively. In all cases, the susceptibility data were fitted by the expression for a Heisenberg square-planar system. The obtained J/k values are 1.44 and 1.15 K, for the SrCu and BaCu compounds, respectively, and −0.65 and −0.59 K for the SrMn and BaMn compounds, respectively. For the manganese compounds, magnetic measurements show a magnetic ordering below 5 K which confirms the presence of a weak ferromagnetism. Thermal analyses of the phases show three different decomposition steps: dehydration, ligand pyrolysis, and evolution of the inorganic residue for all compounds. Taking these results into account, we performed further thermal treatments to obtain mixed oxides. These were obtained at short reaction times and at temperatures lower than those of the conventional ceramic method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.