For portable and embedded smart, wireless electronic systems, energy harvesting from the ambient energy sources has gained immense interest in recent years. Several ambient energies exist in the environment of wireless sensor nodes (WSNs) that include thermal, solar, vibration and acoustic energy. This paper presents the recent development in the field of acoustic energy harvesters (AEHs). AEHs convert the acoustic energy into useful electrical energy for the operation of autonomous wireless sensors. Mainly, two types of AEHs (electromagnetic and piezoelectric based) have been developed and reported in literature. The power produced by the reported piezoelectric AEHs ranges from 0.68 pW to 30 mW; however, the power generation of the developed electromagnetic AEHs is in the range of 1.5–1.96 mW. The overall size of most of the developed piezoelectric and electromagnetic AEHs are quite comparable and in millimeter scale. The resonant frequencies of electromagnetic AEHs are on the lower side (143–470 Hz), than that of piezoelectric AEHs (146 Hz–16.7 kHz).
This paper reports an improved acoustic energy harvester with a tapered Helmholtz cavity. The harvester consists of a bimorph piezoelectric composite plate and a Helmholtz resonator (HR) with a tapered cavity. The architecture, operational mechanism, fabrication, and characterization of the harvesters are described. The harvesters are tested under sinusoidal sound pressure levels (SPLs) inside a lab as well as random SPLs in a real ambient acoustical environment. When a harvester with a tapered HR and without proof mass attached to its piezoelectric plate is characterized at a sinusoidal SPL of 130 dB, a maximum power of 90.6 μW is delivered to 1 kΩ load. In comparison, a similar harvester with a cylindrical shape HR produced a maximum power of 51.4 μW under the similar acoustic conditions. It is found that 76.26% increase in power is achieved with the tapered cavity for the HR. Furthermore, due to the attachment of a proof mass (0.84 g) with the harvester, its power production capability is further increased by 103.3%, from 90.6 to 184.18 μW. Moreover, in a real environment, the maximum voltage amplitudes of about 260 and 280 mV are produced by the harvester when placed in the surrounding of a motorbike and domestic electric generator, respectively.
This paper reports a novel hybrid acoustic energy harvester. The harvester utilizes both the electromagnetic and piezoelectric conversion mechanisms simultaneously to convert the ambient acoustical noise into electrical power for self-powered wireless sensor nodes. The proposed harvester is comprised of a Helmholtz resonator, two magnets mounted on a piezoelectric plate, and a wound coil located under the magnets. The harvester is characterized both under harmonic and real random acoustical excitations. In-lab, under harmonic acoustical excitation at a sound pressure level of 130 dB and frequency of 2.1 kHz, an optimum power of 2.86 μW (at 114 Ω optimum load) is obtained from electromagnetic conversion and 50 μW (at 1000 Ω optimum load) is generated by the piezoelectric harvester's part. Moreover, in real acoustical environment of a domestic electric generator the peak voltages of 40 and 123 mV are produced by the electromagnetic and piezoelectric portions of the acoustic energy harvester.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.