Polyunsaturated fatty acids may be derived from a variety of sources and could be incorporated into a balanced diet. They protect against a wide range of illnesses, including cancer osteoarthritis and autoimmune problems. The PUFAs, ω‐6, and ω‐3 fatty acids, which are found in both the marine and terrestrial environments, are given special attention. The primary goal is to evaluate the significant research papers in relation to the human health risks and benefits of ω‐6 and ω‐3 fatty acid dietary resources. This review article highlights the types of fatty acids, factors affecting the stability of polyunsaturated fatty acids, methods used for the mitigation of oxidative stability, health benefits of polyunsaturated fatty acids, and future perspectives in detail.
The current review was carried out on the industrial application of fig by-products and their role against chronic disorders. Fig is basically belonging to fruit and is botanically called Ficus carica. There are different parts of fig, including the leaves, fruits, seeds and latex. The fig parts are a rich source of bioactive compounds and phytochemicals including antioxidants, phenolic compounds, polyunsaturated fatty acids, phytosterols and vitamins. These different parts of fig are used in different food industries such as the bakery, dairy and beverage industries. Fig by-products are used in extract or powder form to value the addition of different food products for the purpose of improving the nutritional value and enhancing the stability. Fig by-products are additive-based products which contain high phytochemicals fatty acids, polyphenols and antioxidants. Due to the high bioactive compounds, these products performed a vital role against various diseases including cancer, diabetes, constipation, cardiovascular disease (CVD) and the gastrointestinal tract (GIT). Concussively, fig-based food products may be important for human beings and produce healthy food.
Nowadays, agricultural waste byproducts are exploited in the food industry rather than discarded. Pumpkin is one of the most significant vegetable crops that is widely consumed in farmland and certain urban regions. The current study was designed to measure the phytochemical constituents, food application, health benefits, and toxicity of pumpkin and pumpkin byproducts. Pumpkins and pumpkin byproducts (seeds, leaf, and skin/peel) can be utilized as functional ingredients. Different parts of the pumpkin contain bioactive compounds including carotenoids, lutein, zeaxanthin, vitamin E, ascorbic acid, phytosterols, selenium, and linoleic acid. Pumpkin is used in various food sectors as a functional food, including baking, beverages, meat, and dairy industries. Furthermore, the leaves and pulp of the pumpkin are used to produce soups, purees, jams, and pies. Different parts of pumpkins have several health benefits such as antidiabetic, antioxidant, anticancer, and anti-inflammatory effects. Therefore, this review paper elaborates on the pumpkins and pumpkin byproducts that can be used to develop food products and may be valuable against various diseases.
Carob is botanically called as Ceratonia siliqua and belongs to the Legumes family. The fruit is derived from hermaphrodite trees and hard in shape. The carob contains high sugar contents in pulp, fat in seed and minerals like potassium, calcium, and phosphorus are present in pods. Polyphenols and antioxidants are abundant in leaves and pods. It can be used for enhancing human health due to its high nutritional profile. Carob gum is used in the pharmaceutical industry in the form of pomades, anti‐celiac ingredients, pills, and dental paste. The clinical carob can aid as an anti‐cancer, anti‐reflux, anti‐diabetic, anti‐diarrheal, anti‐hyperlipidemia, anti‐bacterial, anti‐microbial, and anti‐fungal. Nowadays, carob seeds are being used as an alternative to cocoa powder in food items whereas the leaves, pods, and seeds of carob are also historically used as food for animal feed. However, these parts of carob are available in markets with reasonable prices. Carob production, though with a rising contribution, contributes to the local economy. In this sense, we can incorporate knowledge on the chemical properties and the biological effect of carob fruits on human health. In this study, the supportive and health‐promoting impacts of carob are discussed along with the clinical testing obtained from natural constituents of carob. In addition, further studies can be performed to extract and separate polyphenols and antioxidant potential for the development of functional that play a valuable role in pharmaceutical and food sectors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.