Water was diffused into very dry thermal SiO2 films under conditions such that the penetration of water related electron trapping centers was of the order of the oxide thickness. In both dry oxides and water diffused oxides, production of negative bulk oxide charge Qot and positive interface charge Qit by an avalanche-injected electron flux was observed. The efficiencies of both processes were enhanced by water indiffusion. Analysis of the kinetics of charge generation indicated that production of trapped electron centers (Qot ) was required for subsequent production of interface states and charge (Qit ). Models for both processes are discussed. We suggest that inelastic collisions of conduction electrons with the trapped electron centers releases mobile hydrogen atoms or excitons. The mobile species migrate to the Si–SiO2 interface and form states and fixed charge.
Two experimental observations are reported concerning the degradation of the Si–SiO2 interface during electron injection in metal-oxide-semiconductor structures. First, the generation of the interfacial positive charge during avalanche injection can be strongly inhibited by employing magnesium, instead of aluminum, as gate metal, or enhanced by employing gold. This correlates with the different work functions of the metals. Second, during negative bias high-field injection in Al-gate capacitors with thin oxides (≲100 Å), a threshold in gate voltage, of 7–8 V, is found for the generation of the positive charge. Both observations are consistent with a model which assumes that holes generated in the anode by hot electrons, via emission of surface plasmons, are injected into the SiO2 and are subsequently trapped at the Si–SiO2 interface. Other possible mechanisms are also discussed.
Early stages in thin film metal-silicon and metal-SiO2 reactions under rapid thermal annealing conditions: The rapid thermal annealing/transmission electron microscopy technique
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.