Semi-insulating halide vapor phase epitaxial β-Ga2O3 films without intentional dopants introduced during growth are demonstrated. The sheet resistance measured in the 340–480 K range yielded 268–134 kΩ/◻ and an activation energy of 0.81 eV. Room temperature capacitance-voltage measurements at 1 MHz showed evidence of an ultra-low free carrier concentration n-type film with a free carrier concentration near flatband (VFB ∼ 4.4 V) estimated to be <1014 cm−3, resulting in a high breakdown voltage of 2380 V (3.18 MV/cm) measured on a lateral diode without field termination. Secondary ion mass spectroscopy did not reveal Fe compensating species; however, an average Si concentration of about 5 × 1015 cm−3 and an N concentration of about 2 × 1017 cm−3 were detected, suggesting that N acceptors compensated Si donors to result in a nearly intrinsic β-Ga2O3 film. Photoionization spectroscopy suggested the presence of a deep acceptor-like level located at Ec −0.23 eV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.