In spite of the relevance of the proposal introduced in the recent work A. Abedi, N. T. Maitra and E. K. U. Gross, J. Chem. Phys. 137, 22A530, 2012, there is an important ingredient which is missing. Namely, the proof that the norms of the electronic and nuclear wavefunctions which are the solutions to the nonlinear equations of motion are preserved by the evolution. To prove the conservation of these norms is precisely the objective of this Comment.
In this work we generalize and combine Gibbs and von Neumann approaches to build, for the first time, a rigorous definition of entropy for hybrid quantum-classical systems. The resulting function coincides with the two cases above when the suitable limits are considered. Then, we apply the MaxEnt principle for this hybrid entropy function and obtain the natural candidate for the hybrid canonical ensemble (HCE). We prove that the suitable classical and quantum limits of the HCE coincide with the usual classical and quantum canonical ensembles since the whole scheme admits both limits, thus showing that the MaxEnt principle is applicable and consistent for hybrid systems.
A geometric description of the space of states of a finite-dimensional quantum system and of the Markovian evolution associated with the Kossakowski-Lindblad operator is presented. This geometric setting is based on two composition laws on the space of observables defined by a pair of contravariant tensor fields. The first one is a Poisson tensor field that encodes the commutator product and allows us to develop a Hamiltonian mechanics. The other tensor field is symmetric, encodes the Jordan product and provides the variances and covariances of measures associated with the observables. This tensorial formulation of quantum systems is able to describe, in a natural way, the Markovian dynamical evolution as a vector field on the space of states. Therefore, it is possible to consider dynamical effects on non-linear physical quantities, such as entropies, purity and concurrence. In particular, in this work the tensorial formulation is used to consider the dynamical evolution of the symmetric and skewsymmetric tensors and to read off the corresponding limits as giving rise to a contraction of the initial Jordan and Lie products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.