[1] Alteration of sheeted dikes exposed along submarine escarpments at the Pito Deep Rift (NE edge of the Easter microplate) provides constraints on the crustal component of axial hydrothermal systems at fast spreading mid-ocean ridges. Samples from vertical transects through the upper crust constrain the temporal and spatial scales of hydrothermal fluid flow and fluid-rock reaction. The dikes are relatively fresh (average extent of alteration is 27%), with the extent of alteration ranging from 0 to >80%. Alteration is heterogeneous on scales of tens to hundreds of meters and displays few systematic spatial trends. Background alteration is amphibole-dominated, with chlorite-rich dikes sporadically distributed throughout the dike complex, indicating that peak temperatures ranged from <300°C to >450°C and did not vary systematically with depth. Dikes locally show substantial metal mobility, with Zn and Cu depletion and Mn enrichment. Amphibole and chlorite fill fractures throughout the dike complex, whereas quartz-filled fractures and faults are only locally present. Regional variability in alteration characteristics is found on a scale of <1-2 km, illustrating the diversity of fluid-rock interaction that can be expected in fast spreading crust. We propose that much of the alteration in sheeted dike complexes develops within broad, hot upwelling zones, as the inferred conditions of alteration cannot be achieved in downwelling zones, particularly in the shallow dikes. Migration of circulating cells along rides axes and local evolution of fluid compositions produce sections of the upper crust with a distinctive character of alteration, on a scale of <1-2 km and <5-20 ka.
The morphology of clastic continental margins directly reflects their formative processes. These include interactions between plate movements and isostasy, which establish the characteristic stairstep shape of margins. Other factors are thermal and loading-induced subsidence, compaction and faulting/folding, which create and/or destroy accommodation space for sediment supplied by rivers and glaciers. These processes are primary controls on margin size and shape. Rivers and glaciers can also directly sculpt the margin surface when it is subaerially exposed by sea-level lowstands. Otherwise, they deposit their sediment load at or near the shoreline. Whether this deposition builds a delta depends on sea level and the energy of the ocean waves and currents. Delta formation will be prevented when sea level is rising faster than sediment supply can build the shoreline. Vigorous wave and current activity can slow or even arrest subaerial delta development by moving sediments seaward to form a subaqueous delta. This sediment movement is accomplished in part by wave-supported sediment gravity flows. Over the continental slope, turbidity currents are driven by gravity and, in combination with slides, cut submarine canyons and gullies. However, turbidity currents also deposit sediment across the continental slope. The average angle of continental slopes (~4°) lies near the threshold angle above which turbidity currents will erode the seafloor and below which they will deposit their sediment load. Therefore, turbidity currents may help regulate the dip of the continental slope. Internal waves exert a maximum shear on the continental-slope surface at about the same angle, and may be another controlling factor.
Lava rheology is a major control on lava flow behavior and a critical parameter in flow simulations, but is very difficult to measure at field conditions or correctly extrapolate from the lab scale. We present a new methodology for investigating lava rheology through a combination of controlled experiments, image analysis and numerical forward modeling. Our experimental setup, part of the Syracuse University Lava Project (http:// lavaproject.syr.edu) includes a large furnace capable of melting up to 450 kg of basalt, at temperatures well above the basalt liquidus. The lava is poured onto either a tilted bed of sand or a steel channel to produce meter-long flows. This experimental setup is probably the only facility that allows such large scale controlled lava flows made of natural basaltic material. We document the motion of the lava using a high-resolution video camera placed directly above the flows, and the temperature using infrared probes and cameras. After collecting the footage, we analyze the images for lava deformation and compare with numerical forward-models to constrain the rheological parameters and laws which best describe the flowing lava. For the video analysis, we employ the technique of Differential Optical Flow, which uses the time-variations of the spatial gradients of the image intensity to estimate velocity between consecutive frames. An important benefit for using optical flow, compared with other velocimetry methods, is that it outputs a spatially coherent flow field rather than point measurements. We demonstrate that the optical flow results agree with other measures of the flow velocity, and estimate the error due to noise and time-variability to be under 30% of the measured velocity. Our forward-models are calculated by solving the Stokes flow equations on an unstructured finite-element mesh defined using the geometry of the observed flow itself. We explore a range of rheological parameters, including the lava's apparent viscosity, the power-law exponent m and the thermal activation energy. Our measurements of apparent viscosity agree well with predictions of the composition-based Shaw (1972) and GRD model (Giordano, Russell and Dingwell, 2008). We find that for the high-temperature portion of the flow a weakly shear-thinning or Newtonian rheology (m > 0.7) with an effective activation energy of B = 5500 J gives the best fit to the data. Our methodology is the first time that high-resolution optical flow analysis of flowing lava is combined with numerical flow models to constrain rheology. The methodology we present here can be used in field conditions to obtain in-situ information on lava rheology, without physical interaction with the flow and without being limited to point-wise, low strain-rate, local measurements currently available through the use of rotational viscometers in the field.
Mantle-derived serpentinized peridotites crop out in a belt approximately 2 km wide and 20 km long along the western median valley wall of the Mid-Atlantic Ridge just south of the Kane Transform in the MARK area. Serpentinites extend southward from extensive exposures of gabbroic rocks near the Kane Transform. The belt crops out along approximately half the length of a well-defined ridge segment parallel to a prominent neovolcanic ridge. It terminates in a segment boundary zone to the south marked by a bathymetric depression whose trace extends obliquely off axis northwestward into older crust where serpentinites have also been dredged. The seΦentinites are considered to have been exposed by extreme lithospheric extension along a major crustal detachment, as suggested for mafic plutonic rocks that crop out as an oceanic "core complex" to the north. Gently dipping metamoΦhic fabrics and fault surfaces in the seΦentinites suggest a similar structural history for these two adjacent areas. Consistently oriented high-and low-temperature fabrics along the length of the belt of seΦentinized peridotites do not support diapiric uplift as a mechanism for the exposure of these exotic rocks. Gabbroic to diabasic intrusions and overlying basaltic lavas suggest that the seΦentinites were exposed by uplift and faulting of upper mantle material that did not develop an extensive overlying magmatic crust as it rose beneath the ridge axis and spread laterally. These types of exposures of hydrated upper mantle material appear to be common elements of oceanic crust formed at slow-spreading ridges with low magma budgets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.