Lava rheology is a major control on lava flow behavior and a critical parameter in flow simulations, but is very difficult to measure at field conditions or correctly extrapolate from the lab scale. We present a new methodology for investigating lava rheology through a combination of controlled experiments, image analysis and numerical forward modeling. Our experimental setup, part of the Syracuse University Lava Project (http:// lavaproject.syr.edu) includes a large furnace capable of melting up to 450 kg of basalt, at temperatures well above the basalt liquidus. The lava is poured onto either a tilted bed of sand or a steel channel to produce meter-long flows. This experimental setup is probably the only facility that allows such large scale controlled lava flows made of natural basaltic material. We document the motion of the lava using a high-resolution video camera placed directly above the flows, and the temperature using infrared probes and cameras. After collecting the footage, we analyze the images for lava deformation and compare with numerical forward-models to constrain the rheological parameters and laws which best describe the flowing lava. For the video analysis, we employ the technique of Differential Optical Flow, which uses the time-variations of the spatial gradients of the image intensity to estimate velocity between consecutive frames. An important benefit for using optical flow, compared with other velocimetry methods, is that it outputs a spatially coherent flow field rather than point measurements. We demonstrate that the optical flow results agree with other measures of the flow velocity, and estimate the error due to noise and time-variability to be under 30% of the measured velocity. Our forward-models are calculated by solving the Stokes flow equations on an unstructured finite-element mesh defined using the geometry of the observed flow itself. We explore a range of rheological parameters, including the lava's apparent viscosity, the power-law exponent m and the thermal activation energy. Our measurements of apparent viscosity agree well with predictions of the composition-based Shaw (1972) and GRD model (Giordano, Russell and Dingwell, 2008). We find that for the high-temperature portion of the flow a weakly shear-thinning or Newtonian rheology (m > 0.7) with an effective activation energy of B = 5500 J gives the best fit to the data. Our methodology is the first time that high-resolution optical flow analysis of flowing lava is combined with numerical flow models to constrain rheology. The methodology we present here can be used in field conditions to obtain in-situ information on lava rheology, without physical interaction with the flow and without being limited to point-wise, low strain-rate, local measurements currently available through the use of rotational viscometers in the field.
Quantitative measurements of interactions between lava and ice/snow are critical for improving our knowledge of glaciovolcanic hazards and our ability to use glaciovolcanic deposits for paleoclimate reconstructions. However, such measurements are rare because the eruptions tend to be dangerous and not easily accessible. To address these diffi culties, we conducted a series of pilot experiments designed to allow close observation, measurements, and textural documentation of interactions between basaltic melt and ice. Here we report the results of the fi rst experiments, which comprised controlled pours of as much as 300 kg of basaltic melt on top of ice. Our experiments provide new insights on (1) estimates for rates of heat transfer through boundary layers and for ice melting; (2) controls on rates of lava advance over ice/ snow; (3) formation of lava bubbles (i.e., Limu o Pele) by steam from vaporization of underlying ice or water; and (4) the role of within-ice discontinuities to facilitate lava migration beneath and within ice. The results of our experiments confi rm fi eld observations about the rates at which lava can melt snow/ice, the effi cacy with which a boundary layer can slow melting rates, and morphologies and textures indicative of direct lava-ice interaction. They also demonstrate that ingestion of external water by lava can create surface bubbles (i.e., Limu) and large gas cavities. We propose that boundary layer steam can slow heat transfer from lava to ice, and present evidence for rapid isotopic exchange between water vapor and melt. We also suggest new criteria for identifying ice-contact features in terrestrial and martian lava fl ows.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.